Copyright (c) 2021 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Fabrication, Structural, Optical, Electrical Properties and Influence of Complexing Agents on Ternary CuZnS2 Thin Film
Corresponding Author(s) : R. Thiruneelakandan
Asian Journal of Chemistry,
Vol. 33 No. 11 (2021): Vol 33 Issue 11, 2021
Abstract
In the present work, copper zinc sulphide (CuZnS2) thin films with and without complexing agents using glass plate as substrate were prepared. Chemical bath deposition method was employed to deposit the thin films. Powder X-ray diffraction (PXRD) patterns of the prepared films indicate the crystalline nature of CuZnS2 with cubic phases. The SEM and AFM images illustrate that the deposited films were highly influenced on the polyhedral morphology by the complexing agents. The influence of complexing agents on absorbance and band gap of the CuZnS2 thin films were characterized using UV-Vis absorption studies. Hall effect measurements indicate the CuZnS2 thin film without surfactant belongs to p-type semiconductor and become n-type after adding the complexing agents EDTA and Leishman stain. From the I-V curve, all the samples having slow conducting nature was found for changing the voltage with the current from -32 nA to +30 nA using solar stimulator.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K.L. Chopra, P.D. Paulson and V. Dutta, Prog. Photovolt. Res. Appl., 12, 69 (2004); https://doi.org/10.1002/pip.541
- E. Guneri, C. Ulutas, F. Kirmizigul, G. Altindemir, F. Gode and C. Gumus, Appl. Surf. Sci., 257, 1189 (2010); https://doi.org/10.1016/j.apsusc.2010.07.104
- H.A. Macpherson and C.R. Stoldt, ACS Nano, 6, 8940 (2012); https://doi.org/10.1021/nn3029502
- N.K. Reddy and K.T.R. Reddy, Thin Solid Films, 325, 4 (1998); https://doi.org/10.1016/S0040-6090(98)00431-3
- G.H. Yue, D.I. Peng, P.X. Yan, L.S. Wang, W. Wang and X.H. Luo, J. Alloys Compd., 468, 254 (2009); https://doi.org/10.1016/j.jallcom.2008.01.047
- X. Xu, S. Shukla, Y. Liu, B. Yue, J. Bullock, L. Su, Y. Li, A. Javey, X. Fang and J.W. Ager, Phys. Status Solidi Rapid Res. Lett., 12, 700381 (2018); https://doi.org/10.1002/pssr.201700381
- A.M. Diamond, L. Corbellini, K.R. Balasubramaniam, S. Chen, S. Wang, T.S. Matthews, L.W. Wang, R. Ramesh and J.W. Ager, Status Solidi Appl. Mater. Sci., 209, 2101 (2012); https://doi.org/10.1002/pssa.201228181
- S.H. Chaki, K.S. Mahato, T.J. Malek and M.P. Deshpande, J. Sci. Adv. Mater. Devices, 2, 215 (2017); https://doi.org/10.1016/j.jsamd.2017.04.002
- X. Dai, H. Lei, C. Chen, Y. Guo and G. Fang, RSC Adv., 8, 16887 (2018); https://doi.org/10.1039/C8RA01299G
- Y. Wang, M. Liu, F. Huang, L. Chen, H. Li, X. Lin, W. Wang and Y. Xia, Chem. Mater., 19, 3102 (2007); https://doi.org/10.1021/cm070235a
- C. Chappaz-Gillot, S. Berson, R. Salazar, B. Lechêne, D. Aldakov, V. Delaye, S. Guillerez and V. Ivanova, Sol. Energy Mater. Sol. Cells, 120, 163 (2014); https://doi.org/10.1016/j.solmat.2013.08.038
- P. Pattanasattayavong, N. Yaacobi-Gross, K. Zhao, G.O.N. Ndjawa, J. Li, F. Yan, B.C. O’Regan, A. Amassian and T.D. Anthopoulos, Adv. Mater., 25, 1504 (2013); https://doi.org/10.1002/adma.201202758
- M. Feng, H. Zhou, W. Guo, D. Zhang, L. Ye, W. Li, J. Ma, G. Wang and S. Chen, J. Alloys Compd., 750, 750 (2018); https://doi.org/10.1016/j.jallcom.2018.03.402
- X. Xu, J. Bullock, L.T. Schelhas, E.Z. Stutz, J.J. Fonseca, M. Hettick, V.L. Pool, K.F. Tai, M.F. Toney, X. Fang, A. Javey, L.H. Wong and J.W. Ager, Nano Lett., 16, 1925 (2016); https://doi.org/10.1021/acs.nanolett.5b05124
- Q. Li, J. Hu, Y. Cui, J. Wang, Y. Hao, T. Shen and L. Duan, Front. Chem., 9, 621549 (2021); https://doi.org/10.3389/fchem.2021.621549
- B. Tong and M. Ichimura, Jpn. J. Appl. Phys., 55, 098004 (2016); https://doi.org/10.7567/JJAP.55.098004
- A. Mallick, S. Chattopadhyay, G. De and D. Basak, J. Alloys Compd., 770, 813 (2019); https://doi.org/10.1016/j.jallcom.2018.08.178
- M. Adelifard, H. Eshghi and M.M. Bagheri Mohagheghi, Opt. Commun., 285, 4400 (2012); https://doi.org/10.1016/j.optcom.2012.06.030
- S.K. Maurya, Y. Liu, X. Xu, R. Woods-Robinson, C. Das, J.W. Ager III and K.R. Balasubramaniam, J. Phys. D Appl. Phys., 50, 505107 (2017); https://doi.org/10.1088/1361-6463/aa95b3
- R. Woods-Robinson, J.K. Cooper, X. Xu, L.T. Schelhas, V.L. Pool, A. Faghaninia, C.S. Lo, M.F. Toney, I.D. Sharp and J.W. Ager III, Adv. Electron. Mater., 2, 1500396 (2016); https://doi.org/10.1002/aelm.201500396
- W. Chamorro, T.S. Shyju, P. Boulet, S. Migot, J. Ghanbaja, P. Miska, P. Kuppusami and J.F. Pierson, RSC Adv., 6, 43480 (2016); https://doi.org/10.1039/C6RA05819A
- W.S. Ni and Y.J. Lin, Appl. Phys., A Mater. Sci. Process, 119, 1127 (2015); https://doi.org/10.1007/s00339-015-9079-2
- B. Barman, K.V. Bangera and G.K. Shivakumar, J. Alloys Compd., 772, 532 (2019); https://doi.org/10.1016/j.jallcom.2018.09.192
- Z.J. Luan, L.Y. Huang, F. Wang and L. Meng, Appl. Surf. Sci., 258, 1505 (2011); https://doi.org/10.1016/j.apsusc.2011.09.116
- N.K. Reddy and K.T.R. Reddy, Physica B, 368, 25 (2005); https://doi.org/10.1016/j.physb.2005.06.032
- P.K. Nair, M.T.S. Nair and J. Campos, J. Electrochem. Soc., 140, 539 (1993); https://doi.org/10.1149/1.2221083
- X.Y. Li, H.J. Li, Z.J. Wang, H. Xia, Z.Y. Xiong, J.X. Wang and B.C. Yang, Opt. Commun., 282, 247 (2009); https://doi.org/10.1016/j.optcom.2008.10.003
- B. Thomas, T. Cibik, C. Hopfner, K. Diesner, G. Ehlers, S. Fiechter and K. Ellmer, J. Mater. Sci. Mater. Electr., 9, 61 (1998); https://doi.org/10.1023/A:1008943203807
- K. Manikandan, P. Mani, C.S. Dilip, S. Valli, P.F. Hilbert Inbaraj and J.J. Prince, Appl. Surf. Sci., 288, 76 (2014); https://doi.org/10.1016/j.apsusc.2013.09.118
- Y.Z. Dong, Y.F. Zheng, H. Duan, Y.F. Sun and Y.H. Chen, Mater. Lett., 59, 2398 (2005); https://doi.org/10.1016/j.matlet.2005.03.025
- S.K. Jaganathan, A. John Peter, M. Venkatakrishnan and R. Krishnan, New J. Chem., 41, 14977 (2017); https://doi.org/10.1039/C7NJ04016D
- P. Mani, K. Manikandan and J.J. Prince, J. Mater. Sci. Mater. Electron., 27, 744 (2016); https://doi.org/10.1007/s10854-015-3812-7
- T. Mahalingam, S. Thanikaikarasan, R. Chandramohan, K. Chung, J.P. Chu, S.Velumani and J.-K. Rhee, Mater. Sci. Eng. B, 174, 236 (2010); https://doi.org/10.1016/j.mseb.2010.03.055
- K. Manikandan, P. Mani, P.F. Hilbert Inbaraj, T.D. Jospeh, V. Thangaraj, C.S. Dilip and J.J. Prince, Indian J. Pure Appl. Phys., 52, 354 (2014).
- S. Cheng, Y. Chen, Y. He and G. Chen, Mater. Lett., 61, 1408 (2007); https://doi.org/10.1016/j.matlet.2006.07.067
- C.H. An, K.B. Tang, G.Z. Shen, C.R. Wang, Q. Yang, B. Hai and Y.T. Qian, J. Cryst. Growth, 244, 333 (2002); https://doi.org/10.1016/S0022-0248(02)01613-5
- M. Kanzari and B. Rezig, Semicond. Sci. Technol., 15, 335 (2000); https://doi.org/10.1088/0268-1242/15/4/306
References
K.L. Chopra, P.D. Paulson and V. Dutta, Prog. Photovolt. Res. Appl., 12, 69 (2004); https://doi.org/10.1002/pip.541
E. Guneri, C. Ulutas, F. Kirmizigul, G. Altindemir, F. Gode and C. Gumus, Appl. Surf. Sci., 257, 1189 (2010); https://doi.org/10.1016/j.apsusc.2010.07.104
H.A. Macpherson and C.R. Stoldt, ACS Nano, 6, 8940 (2012); https://doi.org/10.1021/nn3029502
N.K. Reddy and K.T.R. Reddy, Thin Solid Films, 325, 4 (1998); https://doi.org/10.1016/S0040-6090(98)00431-3
G.H. Yue, D.I. Peng, P.X. Yan, L.S. Wang, W. Wang and X.H. Luo, J. Alloys Compd., 468, 254 (2009); https://doi.org/10.1016/j.jallcom.2008.01.047
X. Xu, S. Shukla, Y. Liu, B. Yue, J. Bullock, L. Su, Y. Li, A. Javey, X. Fang and J.W. Ager, Phys. Status Solidi Rapid Res. Lett., 12, 700381 (2018); https://doi.org/10.1002/pssr.201700381
A.M. Diamond, L. Corbellini, K.R. Balasubramaniam, S. Chen, S. Wang, T.S. Matthews, L.W. Wang, R. Ramesh and J.W. Ager, Status Solidi Appl. Mater. Sci., 209, 2101 (2012); https://doi.org/10.1002/pssa.201228181
S.H. Chaki, K.S. Mahato, T.J. Malek and M.P. Deshpande, J. Sci. Adv. Mater. Devices, 2, 215 (2017); https://doi.org/10.1016/j.jsamd.2017.04.002
X. Dai, H. Lei, C. Chen, Y. Guo and G. Fang, RSC Adv., 8, 16887 (2018); https://doi.org/10.1039/C8RA01299G
Y. Wang, M. Liu, F. Huang, L. Chen, H. Li, X. Lin, W. Wang and Y. Xia, Chem. Mater., 19, 3102 (2007); https://doi.org/10.1021/cm070235a
C. Chappaz-Gillot, S. Berson, R. Salazar, B. Lechêne, D. Aldakov, V. Delaye, S. Guillerez and V. Ivanova, Sol. Energy Mater. Sol. Cells, 120, 163 (2014); https://doi.org/10.1016/j.solmat.2013.08.038
P. Pattanasattayavong, N. Yaacobi-Gross, K. Zhao, G.O.N. Ndjawa, J. Li, F. Yan, B.C. O’Regan, A. Amassian and T.D. Anthopoulos, Adv. Mater., 25, 1504 (2013); https://doi.org/10.1002/adma.201202758
M. Feng, H. Zhou, W. Guo, D. Zhang, L. Ye, W. Li, J. Ma, G. Wang and S. Chen, J. Alloys Compd., 750, 750 (2018); https://doi.org/10.1016/j.jallcom.2018.03.402
X. Xu, J. Bullock, L.T. Schelhas, E.Z. Stutz, J.J. Fonseca, M. Hettick, V.L. Pool, K.F. Tai, M.F. Toney, X. Fang, A. Javey, L.H. Wong and J.W. Ager, Nano Lett., 16, 1925 (2016); https://doi.org/10.1021/acs.nanolett.5b05124
Q. Li, J. Hu, Y. Cui, J. Wang, Y. Hao, T. Shen and L. Duan, Front. Chem., 9, 621549 (2021); https://doi.org/10.3389/fchem.2021.621549
B. Tong and M. Ichimura, Jpn. J. Appl. Phys., 55, 098004 (2016); https://doi.org/10.7567/JJAP.55.098004
A. Mallick, S. Chattopadhyay, G. De and D. Basak, J. Alloys Compd., 770, 813 (2019); https://doi.org/10.1016/j.jallcom.2018.08.178
M. Adelifard, H. Eshghi and M.M. Bagheri Mohagheghi, Opt. Commun., 285, 4400 (2012); https://doi.org/10.1016/j.optcom.2012.06.030
S.K. Maurya, Y. Liu, X. Xu, R. Woods-Robinson, C. Das, J.W. Ager III and K.R. Balasubramaniam, J. Phys. D Appl. Phys., 50, 505107 (2017); https://doi.org/10.1088/1361-6463/aa95b3
R. Woods-Robinson, J.K. Cooper, X. Xu, L.T. Schelhas, V.L. Pool, A. Faghaninia, C.S. Lo, M.F. Toney, I.D. Sharp and J.W. Ager III, Adv. Electron. Mater., 2, 1500396 (2016); https://doi.org/10.1002/aelm.201500396
W. Chamorro, T.S. Shyju, P. Boulet, S. Migot, J. Ghanbaja, P. Miska, P. Kuppusami and J.F. Pierson, RSC Adv., 6, 43480 (2016); https://doi.org/10.1039/C6RA05819A
W.S. Ni and Y.J. Lin, Appl. Phys., A Mater. Sci. Process, 119, 1127 (2015); https://doi.org/10.1007/s00339-015-9079-2
B. Barman, K.V. Bangera and G.K. Shivakumar, J. Alloys Compd., 772, 532 (2019); https://doi.org/10.1016/j.jallcom.2018.09.192
Z.J. Luan, L.Y. Huang, F. Wang and L. Meng, Appl. Surf. Sci., 258, 1505 (2011); https://doi.org/10.1016/j.apsusc.2011.09.116
N.K. Reddy and K.T.R. Reddy, Physica B, 368, 25 (2005); https://doi.org/10.1016/j.physb.2005.06.032
P.K. Nair, M.T.S. Nair and J. Campos, J. Electrochem. Soc., 140, 539 (1993); https://doi.org/10.1149/1.2221083
X.Y. Li, H.J. Li, Z.J. Wang, H. Xia, Z.Y. Xiong, J.X. Wang and B.C. Yang, Opt. Commun., 282, 247 (2009); https://doi.org/10.1016/j.optcom.2008.10.003
B. Thomas, T. Cibik, C. Hopfner, K. Diesner, G. Ehlers, S. Fiechter and K. Ellmer, J. Mater. Sci. Mater. Electr., 9, 61 (1998); https://doi.org/10.1023/A:1008943203807
K. Manikandan, P. Mani, C.S. Dilip, S. Valli, P.F. Hilbert Inbaraj and J.J. Prince, Appl. Surf. Sci., 288, 76 (2014); https://doi.org/10.1016/j.apsusc.2013.09.118
Y.Z. Dong, Y.F. Zheng, H. Duan, Y.F. Sun and Y.H. Chen, Mater. Lett., 59, 2398 (2005); https://doi.org/10.1016/j.matlet.2005.03.025
S.K. Jaganathan, A. John Peter, M. Venkatakrishnan and R. Krishnan, New J. Chem., 41, 14977 (2017); https://doi.org/10.1039/C7NJ04016D
P. Mani, K. Manikandan and J.J. Prince, J. Mater. Sci. Mater. Electron., 27, 744 (2016); https://doi.org/10.1007/s10854-015-3812-7
T. Mahalingam, S. Thanikaikarasan, R. Chandramohan, K. Chung, J.P. Chu, S.Velumani and J.-K. Rhee, Mater. Sci. Eng. B, 174, 236 (2010); https://doi.org/10.1016/j.mseb.2010.03.055
K. Manikandan, P. Mani, P.F. Hilbert Inbaraj, T.D. Jospeh, V. Thangaraj, C.S. Dilip and J.J. Prince, Indian J. Pure Appl. Phys., 52, 354 (2014).
S. Cheng, Y. Chen, Y. He and G. Chen, Mater. Lett., 61, 1408 (2007); https://doi.org/10.1016/j.matlet.2006.07.067
C.H. An, K.B. Tang, G.Z. Shen, C.R. Wang, Q. Yang, B. Hai and Y.T. Qian, J. Cryst. Growth, 244, 333 (2002); https://doi.org/10.1016/S0022-0248(02)01613-5
M. Kanzari and B. Rezig, Semicond. Sci. Technol., 15, 335 (2000); https://doi.org/10.1088/0268-1242/15/4/306