Copyright (c) 2021 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Kinetic and Thermal Studies of Adsorption of Allura Red Dye by Surface Functionalized Magnetite Nanoparticles
Corresponding Author(s) : Ramesh Kumar
Asian Journal of Chemistry,
Vol. 33 No. 11 (2021): Vol 33 Issue 11, 2021
Abstract
In the present study, chitosan functionalized magnetite nanoparticles (CS@MNPs) were synthesized by a simple and economical coprecipitation technique for efficient magnetic removal of allura red dye (ARD) by adsorption technique from the aqueous solution. Size and surface properties of the bare and surface functionalized MNPs were determined with the help of XRD and TEM technique. Surface functionalization of the bare MNPs was confirmed with the help of FT-IR spectroscopy and TGA techniques. Magnetic properties of the synthesized bare and functionalized MNPs were determined by VSM technique. The effect of various parameters including adsorbent dosages, contact time, temperature on adsorption capacity of the CS@MNPs for allura red dye were investigated with the help of UV-vis spectrophotometer. The pseudo second order kinetics and Langmuir adsorption isotherm model were found to fitted well with the adsorption process of dye onto the chitosan functionalized magnetite nanoparticles (CS@MNPs).
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- L.D. Ardila-Leal, R.A. Poutou-Piñales, A.M. Pedroza-Rodríguez and B.E. Quevedo-Hidalgo, Molecules, 26, 3813 (2021); https://doi.org/10.3390/molecules26133813
- H.B. Slama, A.C. Bouket, Z. Pourhassan, F.N. Alenezi, A. Silini, H. Cherif-Silini, T. Oszako, L. Luptakova, P. Golinska and L. Belbahri, Appl. Sci., 11, 6255 (2021); https://doi.org/10.3390/app11146255
- K.G. Pavithra, P.S. Kumar, V. Jaikumar and P.S. Rajan, J. Ind. Eng. Chem., 75, 1 (2019); https://doi.org/10.1016/j.jiec.2019.02.011
- M. Yusuf, M. Shabbir and F. Mohammad, Nat. Prod. Bioprospect., 7, 123 (2017); https://doi.org/10.1007/s13659-017-0119-9
- S. Gita, A. Hussan and T.G. Choudhury, Environ. Ecol., 35, 2349 (2017).
- K. Rovina, S. Siddiquee and S.M. Shaarani, Front. Microbiol., 7, 798 (2017); https://doi.org/10.3389/fmicb.2016.00798
- T. Tanaka, Toxicology, 92, 169 (1994); https://doi.org/10.1016/0300-483X(94)90175-9
- V. Katheresan, J. Kansedo and S.Y. Lau, J. Environ. Chem. Eng., 6, 4676 (2018); https://doi.org/10.1016/j.jece.2018.06.060
- R.V. Kandisa, N. Saibaba KV, K.B. Shaik and R. Gopinath, J. Bioremed. Biodegrad., 7, 371 (2016); http://doi.org/10.4172/2155-6199.1000371
- N.B. Singh, G. Nagpal, S. Agrawal and Rachna, Environ. Technol. Innov., 11, 187 (2018); https://doi.org/10.1016/j.eti.2018.05.006
- M. Batool, M.Z. Qureshi, F. Hashmi, N. Mehboob and W.M. Daoush, Asian J. Chem., 31, 707 (2019); https://doi.org/10.14233/ajchem.2019.21752
- R. Kumar, B.S. Inbaraj and B.H. Chen, Mater. Res. Bull., 45, 1603 (2010); https://doi.org/10.1016/j.materresbull.2010.07.017
- X.N. Pham, T.P. Nguyen, T.N. Pham, T. Thuy, N. Tran and T.V.T. Tran, Adv. Nat. Sci.: Nanosci. Nanotechnol., 7, 045010 (2016); http://doi.org/10.1088/2043-6262/7/4/045010
- L. Cabrera, S. Gutierrez, N. Menendez, M.P. Morales and P. Herrasti, Electrochim. Acta, 53, 3436 (2008); https://doi.org/10.1016/j.electacta.2007.12.006
- D. Maity and D.C.Ã. Agrawal, J. Magn. Magn. Mater., 308, 46 (2007); https://doi.org/10.1016/j.jmmm.2006.05.001
- T. Saba, F. Minhas, M.I. Malik, F.N. Talpur, A. Jabbar and M.I. Bhanger, Am. J. Anal. Chem., 9, 633 (2018);
- https://doi.org/10.4236/ajac.2018.912046
- W. Wu, Z. Wu, T. Yu, C. Jiang and W.S. Kim, Sci. Technol. Adv. Mater., 16, 023501 (2015); https://doi.org/10.1088/1468-6996/16/2/023501
- C. Pan, B. Hu, W. Li, Y. Sun, H. Ye and X. Zeng, J. Mol. Catal., B Enzym., 61, 208 (2009); https://doi.org/10.1016/j.molcatb.2009.07.003
- G. Unsoy, R. Khodadust, S. Yalcin, P. Mutlu and U. Gunduz, Eur. J. Pharm. Sci., 62, 243 (2014); https://doi.org/10.1016/j.ejps.2014.05.021
- G. Li, Y. Jiang, K. Huang, P. Ding and J. Chen, J. Alloys Compd., 466, 451 (2008); https://doi.org/10.1016/j.jallcom.2007.11.100
- N.A. Kalkan, S. Aksoy, E.A. Aksoy and N. Hasirci, J. Appl. Polym. Sci., 124, 576 (2012); https://doi.org/10.1002/app.34986
- R.K. Gautam and I. Tiwari, Chemosphere, 245, 125553 (2020); https://doi.org/10.1016/j.chemosphere.2019.125553
- Z. Shan, W.-S. Yang, X. Zhang, Q.-M. Huang and H. Ye, J. Braz. Chem. Soc., 18, 1329 (2007); https://doi.org/10.1590/S0103-50532007000700006
- M. Yamaura, R.L. Camilo, L.C. Sampaio, M.A. Macêdo, M. Nakamura and H.E. Toma, J. Magn. Magn. Mater., 279, 210 (2004); https://doi.org/10.1016/j.jmmm.2004.01.094
- S. Sun, H. Zeng, D.B. Robinson, S. Raoux, P.M. Rice, S.X. Wang and G. Li, J. Am. Chem. Soc., 126, 273 (2004); https://doi.org/10.1021/ja0380852
- O. Keskinkan and B. Balci, Asian J. Chem., 25, 4693 (2013); https://doi.org/10.14233/ajchem.2013.14942
- S. Jemimah and S.R. Bheeter, Asian J. Chem., 29, 535 (2017); https://doi.org/10.14233/ajchem.2017.20225
- A.A. Al-Arfaj, F. Alakhras, E. Al-Abbad, N.O. Alzamel, N.A. Al-Omair and N. Ouerfelli, Asian J. Chem., 30, 1645 (2018); https://doi.org/10.14233/ajchem.2018.21298
- M.A. Shaker, A.A. Yakout, D.A. El-Hady, A.H. Abdel-Salam and H.M. Albishri, Asian J. Chem., 27, 4397 (2015); https://doi.org/10.14233/ajchem.2015.19142
- L. Zhou, J. Jin, Z. Liu, X. Liang and C. Shang, J. Hazard. Mater., 185, 1045 (2011); https://doi.org/10.1016/j.jhazmat.2010.10.012
References
L.D. Ardila-Leal, R.A. Poutou-Piñales, A.M. Pedroza-Rodríguez and B.E. Quevedo-Hidalgo, Molecules, 26, 3813 (2021); https://doi.org/10.3390/molecules26133813
H.B. Slama, A.C. Bouket, Z. Pourhassan, F.N. Alenezi, A. Silini, H. Cherif-Silini, T. Oszako, L. Luptakova, P. Golinska and L. Belbahri, Appl. Sci., 11, 6255 (2021); https://doi.org/10.3390/app11146255
K.G. Pavithra, P.S. Kumar, V. Jaikumar and P.S. Rajan, J. Ind. Eng. Chem., 75, 1 (2019); https://doi.org/10.1016/j.jiec.2019.02.011
M. Yusuf, M. Shabbir and F. Mohammad, Nat. Prod. Bioprospect., 7, 123 (2017); https://doi.org/10.1007/s13659-017-0119-9
S. Gita, A. Hussan and T.G. Choudhury, Environ. Ecol., 35, 2349 (2017).
K. Rovina, S. Siddiquee and S.M. Shaarani, Front. Microbiol., 7, 798 (2017); https://doi.org/10.3389/fmicb.2016.00798
T. Tanaka, Toxicology, 92, 169 (1994); https://doi.org/10.1016/0300-483X(94)90175-9
V. Katheresan, J. Kansedo and S.Y. Lau, J. Environ. Chem. Eng., 6, 4676 (2018); https://doi.org/10.1016/j.jece.2018.06.060
R.V. Kandisa, N. Saibaba KV, K.B. Shaik and R. Gopinath, J. Bioremed. Biodegrad., 7, 371 (2016); http://doi.org/10.4172/2155-6199.1000371
N.B. Singh, G. Nagpal, S. Agrawal and Rachna, Environ. Technol. Innov., 11, 187 (2018); https://doi.org/10.1016/j.eti.2018.05.006
M. Batool, M.Z. Qureshi, F. Hashmi, N. Mehboob and W.M. Daoush, Asian J. Chem., 31, 707 (2019); https://doi.org/10.14233/ajchem.2019.21752
R. Kumar, B.S. Inbaraj and B.H. Chen, Mater. Res. Bull., 45, 1603 (2010); https://doi.org/10.1016/j.materresbull.2010.07.017
X.N. Pham, T.P. Nguyen, T.N. Pham, T. Thuy, N. Tran and T.V.T. Tran, Adv. Nat. Sci.: Nanosci. Nanotechnol., 7, 045010 (2016); http://doi.org/10.1088/2043-6262/7/4/045010
L. Cabrera, S. Gutierrez, N. Menendez, M.P. Morales and P. Herrasti, Electrochim. Acta, 53, 3436 (2008); https://doi.org/10.1016/j.electacta.2007.12.006
D. Maity and D.C.Ã. Agrawal, J. Magn. Magn. Mater., 308, 46 (2007); https://doi.org/10.1016/j.jmmm.2006.05.001
T. Saba, F. Minhas, M.I. Malik, F.N. Talpur, A. Jabbar and M.I. Bhanger, Am. J. Anal. Chem., 9, 633 (2018);
https://doi.org/10.4236/ajac.2018.912046
W. Wu, Z. Wu, T. Yu, C. Jiang and W.S. Kim, Sci. Technol. Adv. Mater., 16, 023501 (2015); https://doi.org/10.1088/1468-6996/16/2/023501
C. Pan, B. Hu, W. Li, Y. Sun, H. Ye and X. Zeng, J. Mol. Catal., B Enzym., 61, 208 (2009); https://doi.org/10.1016/j.molcatb.2009.07.003
G. Unsoy, R. Khodadust, S. Yalcin, P. Mutlu and U. Gunduz, Eur. J. Pharm. Sci., 62, 243 (2014); https://doi.org/10.1016/j.ejps.2014.05.021
G. Li, Y. Jiang, K. Huang, P. Ding and J. Chen, J. Alloys Compd., 466, 451 (2008); https://doi.org/10.1016/j.jallcom.2007.11.100
N.A. Kalkan, S. Aksoy, E.A. Aksoy and N. Hasirci, J. Appl. Polym. Sci., 124, 576 (2012); https://doi.org/10.1002/app.34986
R.K. Gautam and I. Tiwari, Chemosphere, 245, 125553 (2020); https://doi.org/10.1016/j.chemosphere.2019.125553
Z. Shan, W.-S. Yang, X. Zhang, Q.-M. Huang and H. Ye, J. Braz. Chem. Soc., 18, 1329 (2007); https://doi.org/10.1590/S0103-50532007000700006
M. Yamaura, R.L. Camilo, L.C. Sampaio, M.A. Macêdo, M. Nakamura and H.E. Toma, J. Magn. Magn. Mater., 279, 210 (2004); https://doi.org/10.1016/j.jmmm.2004.01.094
S. Sun, H. Zeng, D.B. Robinson, S. Raoux, P.M. Rice, S.X. Wang and G. Li, J. Am. Chem. Soc., 126, 273 (2004); https://doi.org/10.1021/ja0380852
O. Keskinkan and B. Balci, Asian J. Chem., 25, 4693 (2013); https://doi.org/10.14233/ajchem.2013.14942
S. Jemimah and S.R. Bheeter, Asian J. Chem., 29, 535 (2017); https://doi.org/10.14233/ajchem.2017.20225
A.A. Al-Arfaj, F. Alakhras, E. Al-Abbad, N.O. Alzamel, N.A. Al-Omair and N. Ouerfelli, Asian J. Chem., 30, 1645 (2018); https://doi.org/10.14233/ajchem.2018.21298
M.A. Shaker, A.A. Yakout, D.A. El-Hady, A.H. Abdel-Salam and H.M. Albishri, Asian J. Chem., 27, 4397 (2015); https://doi.org/10.14233/ajchem.2015.19142
L. Zhou, J. Jin, Z. Liu, X. Liang and C. Shang, J. Hazard. Mater., 185, 1045 (2011); https://doi.org/10.1016/j.jhazmat.2010.10.012