Copyright (c) 2021 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Thermoelectric Power of Silver Telluride Thin Films and its Thermal Conductivity Applications
Corresponding Author(s) : A. Ayeshamariam
Asian Journal of Chemistry,
Vol. 33 No. 11 (2021): Vol 33 Issue 11, 2021
Abstract
The hydrothermal technique was used to create straight single crystal silver telluride nanowires with a diameter of around 200 nm and a length of up to micrometers of decades. There has been no template or surfactant used in the process. As-synthesized products are high purity and well-crystallized, confirmed by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectrum, transmission electron microscopy (TEM), and a high-resolution SAED pattern. Differential scanning calorimetry was used to observe the reversible structural phase shift from the low-temperature monoclinic structure to the high-temperature face-centered cubic structure. Furthermore, the dramatic drop in electrical current in a single nanowire at the phase transition temperature is revealed, paving the way for future research into the manufacturing of one-dimensional nanoscale devices. Silver telluride (Ag2Te) has large thermoelectric coefficients and it was tested by using resistor graph and calculated the values of it, thermal conductivity and Seebeck coefficient were discussed with respect to the temperature of thin films. Semiconductors were superior thermoelectric material due to higher ratio of electrical and thermal conductivities. Therefore, the AgTe thin films deposited on indium tin oxide (ITO) substrates were employed, thermoelectric power and thermal conductivity measurements, respectively.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B. Zhong, X. Wang, Y. Bi, W. Kang and L. Zhang, New J. Chem., 45, 6100 (2021); https://doi.org/10.1039/D1NJ00687H
- N. Li, B. Zhao, S. Zhou, S. Lou and Y. Wang, Mater. Lett., 81, 212 (2012); https://doi.org/10.1016/j.matlet.2012.05.009
- C.S. Suchand Sandeep, A.K. Samal, T. Pradeep and R. Philip, Chem. Phys. Lett., 485, 326 (2010); https://doi.org/10.1016/j.cplett.2009.12.065
- R. Chen, D. Xu, G. Guo and L. Gui, Electrochim. Acta, 49, 2243 (2004); https://doi.org/10.1016/j.electacta.2004.01.004
- C. Jia, B. Zhang, W. Liu, C. Jin, L. Yao, W. Cai and X. Li, J. Cryst. Growth, 285, 527 (2005); https://doi.org/10.1016/j.jcrysgro.2005.09.007
- B. Li, Y. Xie, Y. Liu, J. Huang and Y. Qian, J. Solid State Chem., 158, 260 (2001); https://doi.org/10.1006/jssc.2001.9103
- J. Feng, J. Zhao, B. Tang, P. Liu and J. Xu, J. Solid State Chem., 183, 2932 (2010); https://doi.org/10.1016/j.jssc.2010.09.043
- V.B. Prabhune and V.J. Fulari, Opt. Commun., 282, 2118 (2009); https://doi.org/10.1016/j.optcom.2009.02.029
- L. Bindi, J. Alloys Compd., 473, 262 (2009); https://doi.org/10.1016/j.jallcom.2008.05.043
- A. Tursucu, P. Onder, E. Eroglu and D. Demir, Appl. Radiat. Isot., 70, 1509 (2012); https://doi.org/10.1016/j.apradiso.2012.04.029
- P. Gnanadurai, N. Soundararajan and C.E. Sooriamoorthi, Phys. Status Solidi, 237, 472 (2003); https://doi.org/10.1002/pssb.200301743
- N.M.I. Alhaji, D. Nathiya, K. Kaviyarasu, A. Ayeshamariam and M. Meshram, Surf. Interfaces, 17, 100375 (2019); https://doi.org/10.1016/j.surfin.2019.100375
- M. Karunanithy, G. Prabhavathi, A.H. Beevi, B.H. Ibraheem, K. Kaviyarasu, S. Nivetha, N. Punithavelan, A. Ayeshamariam and M. Jayachandran, J. Nanosci. Nanotechnol., 18, 6680 (2018); https://doi.org/10.1166/jnn.2018.15731
- P.M. Anwar, S. Muruganantham, M. Karunanithy, M. Benhaliliba, A. Ayeshamariam, M. Jayachandran and K. Kaviyarasu, Mater. Today Proc., 36, 492 (2020); https://doi.org/10.1016/j.matpr.2020.05.148
- B. Russ, Doctoral Dissertation, Design Rules for Solution-Processable n-type Organic Thermoelectric Materials, University of California, Berkeley, USA (2015).
- S.L. Kim, Doctoral Dissertation, Thermally Driven Energy Conversion and Storage Based on Organic Nanocomposites, Texas A & M University, USA (2017).
- B. Lorenzi, Doctoral Dissertation, Nanocrystalline Silicon as a Thermoelectric Material-Bring the Nanotechnological Advantage into Bulk (2015).
- I. Petsagkourakis, Doctoral Dissertation, High Performance Polymer and Polymer/Inorganic Thermoelectric Materials, Université de Bordeaux, France (2016).
- O. Uemura, T. Sekiya, H. Ishikawa and T. Satow, Ber. Bunsenges. Phys. Chem, 90, 71 (1986); https://doi.org/10.1002/bbpc.19860900112
- M.H. Lee, D.G. Byeon, J.S. Rhyee and B. Ryu, J. Mater. Chem. A Mater. Energy Sustain., 5, 2235 (2017); https://doi.org/10.1039/C6TA09941F
References
B. Zhong, X. Wang, Y. Bi, W. Kang and L. Zhang, New J. Chem., 45, 6100 (2021); https://doi.org/10.1039/D1NJ00687H
N. Li, B. Zhao, S. Zhou, S. Lou and Y. Wang, Mater. Lett., 81, 212 (2012); https://doi.org/10.1016/j.matlet.2012.05.009
C.S. Suchand Sandeep, A.K. Samal, T. Pradeep and R. Philip, Chem. Phys. Lett., 485, 326 (2010); https://doi.org/10.1016/j.cplett.2009.12.065
R. Chen, D. Xu, G. Guo and L. Gui, Electrochim. Acta, 49, 2243 (2004); https://doi.org/10.1016/j.electacta.2004.01.004
C. Jia, B. Zhang, W. Liu, C. Jin, L. Yao, W. Cai and X. Li, J. Cryst. Growth, 285, 527 (2005); https://doi.org/10.1016/j.jcrysgro.2005.09.007
B. Li, Y. Xie, Y. Liu, J. Huang and Y. Qian, J. Solid State Chem., 158, 260 (2001); https://doi.org/10.1006/jssc.2001.9103
J. Feng, J. Zhao, B. Tang, P. Liu and J. Xu, J. Solid State Chem., 183, 2932 (2010); https://doi.org/10.1016/j.jssc.2010.09.043
V.B. Prabhune and V.J. Fulari, Opt. Commun., 282, 2118 (2009); https://doi.org/10.1016/j.optcom.2009.02.029
L. Bindi, J. Alloys Compd., 473, 262 (2009); https://doi.org/10.1016/j.jallcom.2008.05.043
A. Tursucu, P. Onder, E. Eroglu and D. Demir, Appl. Radiat. Isot., 70, 1509 (2012); https://doi.org/10.1016/j.apradiso.2012.04.029
P. Gnanadurai, N. Soundararajan and C.E. Sooriamoorthi, Phys. Status Solidi, 237, 472 (2003); https://doi.org/10.1002/pssb.200301743
N.M.I. Alhaji, D. Nathiya, K. Kaviyarasu, A. Ayeshamariam and M. Meshram, Surf. Interfaces, 17, 100375 (2019); https://doi.org/10.1016/j.surfin.2019.100375
M. Karunanithy, G. Prabhavathi, A.H. Beevi, B.H. Ibraheem, K. Kaviyarasu, S. Nivetha, N. Punithavelan, A. Ayeshamariam and M. Jayachandran, J. Nanosci. Nanotechnol., 18, 6680 (2018); https://doi.org/10.1166/jnn.2018.15731
P.M. Anwar, S. Muruganantham, M. Karunanithy, M. Benhaliliba, A. Ayeshamariam, M. Jayachandran and K. Kaviyarasu, Mater. Today Proc., 36, 492 (2020); https://doi.org/10.1016/j.matpr.2020.05.148
B. Russ, Doctoral Dissertation, Design Rules for Solution-Processable n-type Organic Thermoelectric Materials, University of California, Berkeley, USA (2015).
S.L. Kim, Doctoral Dissertation, Thermally Driven Energy Conversion and Storage Based on Organic Nanocomposites, Texas A & M University, USA (2017).
B. Lorenzi, Doctoral Dissertation, Nanocrystalline Silicon as a Thermoelectric Material-Bring the Nanotechnological Advantage into Bulk (2015).
I. Petsagkourakis, Doctoral Dissertation, High Performance Polymer and Polymer/Inorganic Thermoelectric Materials, Université de Bordeaux, France (2016).
O. Uemura, T. Sekiya, H. Ishikawa and T. Satow, Ber. Bunsenges. Phys. Chem, 90, 71 (1986); https://doi.org/10.1002/bbpc.19860900112
M.H. Lee, D.G. Byeon, J.S. Rhyee and B. Ryu, J. Mater. Chem. A Mater. Energy Sustain., 5, 2235 (2017); https://doi.org/10.1039/C6TA09941F