Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Template Assisted Synthesis of Nanoporous Carbon from Bio-Weed of Ipomoea carnea Stems for Supercapacitor Applications
Corresponding Author(s) : S. Raghu
Asian Journal of Chemistry,
Vol. 31 No. 5 (2019): Vol 31 Issue 5
Abstract
In this study, we report the hierarchically nanoporous activated carbons syntheses from most abundant bio-weed source of Ipomoea carnea stems by nickel foam template assisted with chemical and thermal activation method. The mixture of ferric chloride and diethyl ether of the activating agent and the impregnation ratios are investigated under constant temperature at 800 °C for 2 h. The effective novel synthesized scheme and hierarchical nanoporous carbon structure with large specific surface areas of 1264.9 m2 g-1 and mean pore diameter of 2.1628 nm. The electrochemical performance of prepared nanoporous structured carbon electrode is studied in non-aqueous (TEABF4) electrolyte, which exhibits high specific capacitance of 257 Fg-1 maximum energy density of 61.46 Wh kg-1 and power density of 13.32 kW kg-1 at 1 Ag-1 with remarkable capacity retention of 90 % for 10000 cycles. Therefore the present results show the suitability of synthesized material for use in energy storage applications. The representing promising application as a green route to synthesis advance nanoporous carbon materials from Ipomoea carnea biomass for high-capacity supercapaciors.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.F. El-Kady, Y. Shao and R.B. Kaner, Nature Rev. Mater, 1, 16033 (2016); https://doi.org/10.1038/natrevmats.2016.33.
- M. Salanne, B. Rotenberg, K. Naoi, K. Kaneko, P.L. Taberna, C.P. Grey, B. Dunn and P. Simon, Nature Energy, 1, 16070 (2016); https://doi.org/10.1038/nenergy.2016.70.
- Y. Li, Z. Li and P.K. Shen, Adv. Mater., 25, 2474 (2013); https://doi.org/10.1002/adma.201205332.
- M. Wahid, D. Puthusseri, D. Phase and S. Ogale, Energy Fuels, 28, 4233 (2014); https://doi.org/10.1021/ef500342d.
- L.L. Zhang, R. Zhou and X.S. Zhao, J. Mater. Chem., 20, 5983 (2010); https://doi.org/10.1039/c000417k.
- G. Lota, K. Fic and E. Frackowiak, Energy Environ. Sci., 4, 1592 (2011); https://doi.org/10.1039/c0ee00470g.
- H. Wang, W. Wang, H. Wang, X. Jin, H. Niu, H. Wang, H. Zhou and T. Lin, ACS Appl. Energy Mater., 1, 431 (2018); https://doi.org/10.1021/acsaem.7b00083.
- M. Lazzari, F. Soavi and M. Mastragostino, Fuel Cells, 10, 840 (2010); https://doi.org/10.1002/fuce.200900198.
- J. Chmiola, C. Largeot, P.L. Taberna, P. Simon and Y. Gogotsi, Science, 328, 480 (2010); https://doi.org/10.1126/science.1184126.
- S. Zheng, H. Xue and H. Pang, Coord. Chem. Rev., 373, 2 (2018); https://doi.org/10.1016/j.ccr.2017.07.002.
- S. Zheng, X. Li, B. Yan, Q. Hu, Y. Xu, X. Xiao, H. Xue and H. Pang, Adv. Energy Mater., 7, 1602733 (2017); https://doi.org/10.1002/aenm.201602733.
- R.A. Voloshin, M.V. Rodionova, S.K. Zharmukhamedov, T.N. Veziroglu and S.I. Allakhverdiev, Int. J. Hydrogen Energy, 41, 17257 (2016); https://doi.org/10.1016/j.ijhydene.2016.07.084.
- G. Huang, W. Kang, B. Xing, L. Chen and C. Zhang, Fuel Process. Technol., 142, 1 (2016); https://doi.org/10.1016/j.fuproc.2015.09.025.
- K.K. Gupta, K.R. Aneja and D. Rana, Bioresour. Bioprocess., 3, 28 (2016); https://doi.org/10.1186/s40643-016-0105-9.
- M. Gnerlich, H. Ben-Yoav, J.N. Culver, D.R. Ketchum and R. Ghodssi, J. Power Sources, 293, 649 (2015); https://doi.org/10.1016/j.jpowsour.2015.05.053.
- U. Iriarte-Velasco, I. Sierra, L. Zudaire and J.L. Ayastuy, J. Mater. Sci., 50, 7568 (2015); https://doi.org/10.1007/s10853-015-9312-6.
- J. Wang, I. Senkovska, S. Kaskel and Q. Liu, Carbon, 75, 372 (2014); https://doi.org/10.1016/j.carbon.2014.04.016.
- H. Xuan, G. Lin, F. Wang, J. Liu, X. Dong and F. Xi, J. Solid State Electrochem., 21, 2241 (2017); https://doi.org/10.1007/s10008-017-3562-y.
- M.J. Ahmed, M.A. Islam, M. Asif and B.H. Hameed, Bioresour. Technol., 243, 778 (2017); https://doi.org/10.1016/j.biortech.2017.06.174.
- D. Chen, X. Chen, J. Sun, Z. Zheng and K. Fu, Bioresour. Technol., 216, 629 (2016); https://doi.org/10.1016/j.biortech.2016.05.107.
- M. Chen, X. Kang, T. Wumaier, J. Dou, B. Gao, Y. Han, G. Xu, Z. Liu and L. Zhang, J. Solid State Electrochem., 17, 1005 (2013); https://doi.org/10.1007/s10008-012-1946-6.
- A. Sarswat and D. Mohan, RSC Adv., 6, 85390 (2016); https://doi.org/10.1039/C6RA19756F.
- Y.S. Yun, M.H. Park, S.J. Hong, M.E. Lee, Y.W. Park and H.J. Jin, ACS Appl. Mater. Interfaces, 7, 3684 (2015); https://doi.org/10.1021/am5081919.
- J. Ajuria, E. Redondo, M. Arnaiz, R. Mysyk, T. Rojo and E. Goikolea, J. Power Sources, 359, 17 (2017); https://doi.org/10.1016/j.jpowsour.2017.04.107.
- R. Madhu, K.V. Sankar, S.M. Chen and R.K. Selvan, RSC Adv., 4, 1225 (2014); https://doi.org/10.1039/C3RA45089A.
- K.T. Kumar, G.S. Sundari, E.S. Kumar, S. Raghu, A. Ashwini, M. Ramya, P. Varsha, R. Kalaivani, M. Shanmugaraj Andikkadu, V. Kumaran, R. Gnanamuthu, S.Z. Karazhanov and S. Raghu, Mater. Lett., 218, 181 (2018); https://doi.org/10.1016/j.matlet.2018.02.017.
- B. Xu, F. Wu, R. Chen, G. Cao, S. Chen and Y. Yang, J. Power Sources, 195, 2118 (2010); https://doi.org/10.1016/j.jpowsour.2009.09.077.
- T.E. Rufford, D. Hulicova-Jurcakova, K. Khosla, Z. Zhu and G.Q. Lu, J. Power Sources, 195, 912 (2010); https://doi.org/10.1016/j.jpowsour.2009.08.048.
- D. Prahas, Y. Kartika, N. Indraswati and S. Ismadji, Chem. Eng. J., 140, 32 (2008); https://doi.org/10.1016/j.cej.2007.08.032.
- A. Ahmadpour and D.D. Do, Carbon, 34, 471 (1996); https://doi.org/10.1016/0008-6223(95)00204-9.
- A.K. Patel, V.K. Singh, R.P. Yadav, A.J. Moir and M.V. Jagannadham, Phytochemistry, 70, 1210 (2009); https://doi.org/10.1016/j.phytochem.2009.07.005.
- P. Sankarganesh, R. Sanjeevi, S. Gajalakshmi, E. Ramasamy and S. Abbasi, Bioresour. Technol., 99, 812 (2008); https://doi.org/10.1016/j.biortech.2007.01.024.
- A. Schwarz, S.L. Gorniak, M.M. Bernardi, M.L. Dagli and H.S. Spinosa, Neurotoxicol. Teratol., 25, 615 (2003); https://doi.org/10.1016/S0892-0362(03)00078-3.
- D. Konwer, R. Kataki and M. Saikia, Energy Sources Part A, 29, 817 (2007); https://doi.org/10.1080/00908310500281189.
- T. Chen, Y. Tang, Y. Qiao, Z. Liu, W. Guo, J. Song, S. Mu, S. Yu, Y. Zhao and F. Gao, Sci. Rep., 6, 23289 (2016); https://doi.org/10.1038/srep23289.
- P. Hojati-Talemi and G.P. Simon, Carbon, 48, 3993 (2010); https://doi.org/10.1016/j.carbon.2010.06.062.
- P. May, M. Lazzeri, P. Venezuela, F. Herziger, G. Callsen, J.S. Reparaz, A. Hoffmann, F. Mauri and J. Maultzsch, Phys. Rev. B, 87, 075402 (2013); https://doi.org/10.1103/PhysRevB.87.075402.
- M.S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus and R. Saito, Nano Lett., 10, 751 (2010); https://doi.org/10.1021/nl904286r.;
- M.M. Lucchese, F. Stavale, E.H.M. Ferreira, C. Vilani, M.V.O. Moutinho, R.B. Capaz, C.A. Achete and A. Jorio, Carbon, 48, 1592 (2010); https://doi.org/10.1016/j.carbon.2009.12.057.
- H. Zhang, X. Yu, D. Guo, B. Qu, M. Zhang, Q. Li and T. Wang, ACS Appl. Mater. Interfaces, 5, 7335 (2013); https://doi.org/10.1021/am401680m.
References
M.F. El-Kady, Y. Shao and R.B. Kaner, Nature Rev. Mater, 1, 16033 (2016); https://doi.org/10.1038/natrevmats.2016.33.
M. Salanne, B. Rotenberg, K. Naoi, K. Kaneko, P.L. Taberna, C.P. Grey, B. Dunn and P. Simon, Nature Energy, 1, 16070 (2016); https://doi.org/10.1038/nenergy.2016.70.
Y. Li, Z. Li and P.K. Shen, Adv. Mater., 25, 2474 (2013); https://doi.org/10.1002/adma.201205332.
M. Wahid, D. Puthusseri, D. Phase and S. Ogale, Energy Fuels, 28, 4233 (2014); https://doi.org/10.1021/ef500342d.
L.L. Zhang, R. Zhou and X.S. Zhao, J. Mater. Chem., 20, 5983 (2010); https://doi.org/10.1039/c000417k.
G. Lota, K. Fic and E. Frackowiak, Energy Environ. Sci., 4, 1592 (2011); https://doi.org/10.1039/c0ee00470g.
H. Wang, W. Wang, H. Wang, X. Jin, H. Niu, H. Wang, H. Zhou and T. Lin, ACS Appl. Energy Mater., 1, 431 (2018); https://doi.org/10.1021/acsaem.7b00083.
M. Lazzari, F. Soavi and M. Mastragostino, Fuel Cells, 10, 840 (2010); https://doi.org/10.1002/fuce.200900198.
J. Chmiola, C. Largeot, P.L. Taberna, P. Simon and Y. Gogotsi, Science, 328, 480 (2010); https://doi.org/10.1126/science.1184126.
S. Zheng, H. Xue and H. Pang, Coord. Chem. Rev., 373, 2 (2018); https://doi.org/10.1016/j.ccr.2017.07.002.
S. Zheng, X. Li, B. Yan, Q. Hu, Y. Xu, X. Xiao, H. Xue and H. Pang, Adv. Energy Mater., 7, 1602733 (2017); https://doi.org/10.1002/aenm.201602733.
R.A. Voloshin, M.V. Rodionova, S.K. Zharmukhamedov, T.N. Veziroglu and S.I. Allakhverdiev, Int. J. Hydrogen Energy, 41, 17257 (2016); https://doi.org/10.1016/j.ijhydene.2016.07.084.
G. Huang, W. Kang, B. Xing, L. Chen and C. Zhang, Fuel Process. Technol., 142, 1 (2016); https://doi.org/10.1016/j.fuproc.2015.09.025.
K.K. Gupta, K.R. Aneja and D. Rana, Bioresour. Bioprocess., 3, 28 (2016); https://doi.org/10.1186/s40643-016-0105-9.
M. Gnerlich, H. Ben-Yoav, J.N. Culver, D.R. Ketchum and R. Ghodssi, J. Power Sources, 293, 649 (2015); https://doi.org/10.1016/j.jpowsour.2015.05.053.
U. Iriarte-Velasco, I. Sierra, L. Zudaire and J.L. Ayastuy, J. Mater. Sci., 50, 7568 (2015); https://doi.org/10.1007/s10853-015-9312-6.
J. Wang, I. Senkovska, S. Kaskel and Q. Liu, Carbon, 75, 372 (2014); https://doi.org/10.1016/j.carbon.2014.04.016.
H. Xuan, G. Lin, F. Wang, J. Liu, X. Dong and F. Xi, J. Solid State Electrochem., 21, 2241 (2017); https://doi.org/10.1007/s10008-017-3562-y.
M.J. Ahmed, M.A. Islam, M. Asif and B.H. Hameed, Bioresour. Technol., 243, 778 (2017); https://doi.org/10.1016/j.biortech.2017.06.174.
D. Chen, X. Chen, J. Sun, Z. Zheng and K. Fu, Bioresour. Technol., 216, 629 (2016); https://doi.org/10.1016/j.biortech.2016.05.107.
M. Chen, X. Kang, T. Wumaier, J. Dou, B. Gao, Y. Han, G. Xu, Z. Liu and L. Zhang, J. Solid State Electrochem., 17, 1005 (2013); https://doi.org/10.1007/s10008-012-1946-6.
A. Sarswat and D. Mohan, RSC Adv., 6, 85390 (2016); https://doi.org/10.1039/C6RA19756F.
Y.S. Yun, M.H. Park, S.J. Hong, M.E. Lee, Y.W. Park and H.J. Jin, ACS Appl. Mater. Interfaces, 7, 3684 (2015); https://doi.org/10.1021/am5081919.
J. Ajuria, E. Redondo, M. Arnaiz, R. Mysyk, T. Rojo and E. Goikolea, J. Power Sources, 359, 17 (2017); https://doi.org/10.1016/j.jpowsour.2017.04.107.
R. Madhu, K.V. Sankar, S.M. Chen and R.K. Selvan, RSC Adv., 4, 1225 (2014); https://doi.org/10.1039/C3RA45089A.
K.T. Kumar, G.S. Sundari, E.S. Kumar, S. Raghu, A. Ashwini, M. Ramya, P. Varsha, R. Kalaivani, M. Shanmugaraj Andikkadu, V. Kumaran, R. Gnanamuthu, S.Z. Karazhanov and S. Raghu, Mater. Lett., 218, 181 (2018); https://doi.org/10.1016/j.matlet.2018.02.017.
B. Xu, F. Wu, R. Chen, G. Cao, S. Chen and Y. Yang, J. Power Sources, 195, 2118 (2010); https://doi.org/10.1016/j.jpowsour.2009.09.077.
T.E. Rufford, D. Hulicova-Jurcakova, K. Khosla, Z. Zhu and G.Q. Lu, J. Power Sources, 195, 912 (2010); https://doi.org/10.1016/j.jpowsour.2009.08.048.
D. Prahas, Y. Kartika, N. Indraswati and S. Ismadji, Chem. Eng. J., 140, 32 (2008); https://doi.org/10.1016/j.cej.2007.08.032.
A. Ahmadpour and D.D. Do, Carbon, 34, 471 (1996); https://doi.org/10.1016/0008-6223(95)00204-9.
A.K. Patel, V.K. Singh, R.P. Yadav, A.J. Moir and M.V. Jagannadham, Phytochemistry, 70, 1210 (2009); https://doi.org/10.1016/j.phytochem.2009.07.005.
P. Sankarganesh, R. Sanjeevi, S. Gajalakshmi, E. Ramasamy and S. Abbasi, Bioresour. Technol., 99, 812 (2008); https://doi.org/10.1016/j.biortech.2007.01.024.
A. Schwarz, S.L. Gorniak, M.M. Bernardi, M.L. Dagli and H.S. Spinosa, Neurotoxicol. Teratol., 25, 615 (2003); https://doi.org/10.1016/S0892-0362(03)00078-3.
D. Konwer, R. Kataki and M. Saikia, Energy Sources Part A, 29, 817 (2007); https://doi.org/10.1080/00908310500281189.
T. Chen, Y. Tang, Y. Qiao, Z. Liu, W. Guo, J. Song, S. Mu, S. Yu, Y. Zhao and F. Gao, Sci. Rep., 6, 23289 (2016); https://doi.org/10.1038/srep23289.
P. Hojati-Talemi and G.P. Simon, Carbon, 48, 3993 (2010); https://doi.org/10.1016/j.carbon.2010.06.062.
P. May, M. Lazzeri, P. Venezuela, F. Herziger, G. Callsen, J.S. Reparaz, A. Hoffmann, F. Mauri and J. Maultzsch, Phys. Rev. B, 87, 075402 (2013); https://doi.org/10.1103/PhysRevB.87.075402.
M.S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus and R. Saito, Nano Lett., 10, 751 (2010); https://doi.org/10.1021/nl904286r.;
M.M. Lucchese, F. Stavale, E.H.M. Ferreira, C. Vilani, M.V.O. Moutinho, R.B. Capaz, C.A. Achete and A. Jorio, Carbon, 48, 1592 (2010); https://doi.org/10.1016/j.carbon.2009.12.057.
H. Zhang, X. Yu, D. Guo, B. Qu, M. Zhang, Q. Li and T. Wang, ACS Appl. Mater. Interfaces, 5, 7335 (2013); https://doi.org/10.1021/am401680m.