Copyright (c) 2017 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Investigation on Single Ion Dynamics of Molten Alkali Chlorides by Molecular Dynamics Simulations
Corresponding Author(s) : Guimin Lu
Asian Journal of Chemistry,
Vol. 29 No. 2 (2017): Vol 29 Issue 2
Abstract
Single ion dynamics of the two ionic species in each molten alkali chlorides at 1100 K have been studied with the molecular dynamics method through velocity auto-correlation functions. The self-diffusion coefficients of these ions have also been calculated from the time integral of the corresponding ionic velocity auto-correlation functions, which are in good agreement with the experimental values. For molten alkali chlorides, the ionic mass significantly affects the ionic dynamics. The self-diffusion coefficients of the light ions are larger than those of the heavy ones. In addition to the self-diffusion coefficients, velocity auto-correlation functions can provide a more intuitive description for the single-ion dynamics. For each melt, the velocity auto-correlation function of the light ions decays faster and exhibits a much more pronounced back scattering than its heavier partner. The velocity auto-correlation function of the light ions will be oscillatory if the mass difference of the two ionic species is significant. The oscillatory amplitude also increases as the mass difference increases.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C. Le Brun, J. Nucl. Mater., 360, 1 (2007).
- M.M. Waldrop, Nature, 492, 26 (2012).
- H. Groult, A. Barhoun, E. Briot, F. Lantelme and C.M. Julien, J. Fluor. Chem., 132, 1122 (2011).
- K. Fukasawa, A. Uehara, T. Nagai, N. Sato, T. Fujii and H. Yamana, J. Nucl. Mater., 424, 17 (2012).
- D.J. Bradwell, H. Kim, A.H. Sirk and D.R. Sadoway, J. Am. Chem. Soc., 134, 1895 (2012).
- J. Trullas, O. Alcaraz, L.E. Gonzalez and M. Silbert, J. Phys. Chem. B, 107, 282 (2003).
- S.M. Urahata and M.C. Ribeiro, Phys. Chem. Chem. Phys., 5, 2619 (2003).
- V. Bitrian and J. Trullas, J. Phys. Chem. B, 110, 7490 (2006).
- Y. Okamoto, S. Suzuki, H. Shiwaku, A. Ikeda-Ohno, T. Yaita and P.A. Madden, J. Phys. Chem. A, 114, 4664 (2010).
- O. Pauvert, M. Salanne, D. Zanghi, C. Simon, S. Reguer, D. Thiaudière, Y. Okamoto, H. Matsuura and C. Bessada, J. Phys. Chem. B, 115, 9160 (2011).
- M. Salanne, C. Simon, P. Turq and P.A. Madden, J. Fluor. Chem., 130, 38 (2009).
- M. Levesque, V. Sarou-Kanian, M. Salanne, M. Gobet, H. Groult, C. Bessada, P.A. Madden and A.L. Rollet, J. Chem. Phys., 138, 184503 (2013).
- V. Sarou-Kanian, A.L. Rollet, M. Salanne, C. Simon, C. Bessada and P.A. Madden, Phys. Chem. Chem. Phys., 11, 11501 (2009).
- M. Dixon and J.M. Gillan, Philos. Mag. Part B, 43, 1099 (1981).
- N. Galamba, C.A. Nieto de Castro and J.F. Ely, J. Chem. Phys., 120, 8676 (2004).
- N. Galamba, C. A. Nieto de Castro and J.F. Ely, J. Chem. Phys., 122, 224501 (2005).
- D. Nevins and F.J. Spera, Mol. Simul., 33, 1261 (2007).
- N. Ohtori, M. Salanne and P.A. Madden, J. Chem. Phys., 130, 1 (2009).
- J. Wang, Z. Sun, G. Lu and J. Yu, J. Phys. Chem. B, 118, 10196 (2014).
- F.G. Fumi and M.P. Tosi, J. Phys. Chem. Solids, 25, 31 (1964); M.P. Tosi and F.G. Fumi, J. Phys. Chem. Solids, 25, 45 (1964).
- J.P. Hansen and I.R. McDonald, Theory of Simple Liquids, Academic Press: London, edn 3 (2005).
- D. Frenkel and B. Smit, Understanding Molecular Simulation-From Algorithms to Applications, Academic Press (1996).
- G. Ciccotti, G. Jacucci and I.R. McDonald, Phys. Rev. A, 13, 426 (1976).
- O. Alcaraz and J. Trullas, J. Chem. Phys., 113, 10635 (2000).
- J. Wang, J. Wu, Z. Sun, G. Lu and J. Yu, J. Mol. Liq., 209, 498 (2015).
- M.P. Allen and D.J. Tlldesley, Computer Simulation of Liquids, Oxford University Press: Oxford, U.K. (1987).
- J.M. Bockris and G.W. Hooper, Discuss. Faraday Soc., 32, 218 (1961).
- J.O.M. Bockris, S.R. Richards and L. Nanis, J. Phys. Chem., 69, 1627 (1965).
- F. Lantelme and P. Turq, J. Chem. Phys., 77, 3177 (1982).
References
C. Le Brun, J. Nucl. Mater., 360, 1 (2007).
M.M. Waldrop, Nature, 492, 26 (2012).
H. Groult, A. Barhoun, E. Briot, F. Lantelme and C.M. Julien, J. Fluor. Chem., 132, 1122 (2011).
K. Fukasawa, A. Uehara, T. Nagai, N. Sato, T. Fujii and H. Yamana, J. Nucl. Mater., 424, 17 (2012).
D.J. Bradwell, H. Kim, A.H. Sirk and D.R. Sadoway, J. Am. Chem. Soc., 134, 1895 (2012).
J. Trullas, O. Alcaraz, L.E. Gonzalez and M. Silbert, J. Phys. Chem. B, 107, 282 (2003).
S.M. Urahata and M.C. Ribeiro, Phys. Chem. Chem. Phys., 5, 2619 (2003).
V. Bitrian and J. Trullas, J. Phys. Chem. B, 110, 7490 (2006).
Y. Okamoto, S. Suzuki, H. Shiwaku, A. Ikeda-Ohno, T. Yaita and P.A. Madden, J. Phys. Chem. A, 114, 4664 (2010).
O. Pauvert, M. Salanne, D. Zanghi, C. Simon, S. Reguer, D. Thiaudière, Y. Okamoto, H. Matsuura and C. Bessada, J. Phys. Chem. B, 115, 9160 (2011).
M. Salanne, C. Simon, P. Turq and P.A. Madden, J. Fluor. Chem., 130, 38 (2009).
M. Levesque, V. Sarou-Kanian, M. Salanne, M. Gobet, H. Groult, C. Bessada, P.A. Madden and A.L. Rollet, J. Chem. Phys., 138, 184503 (2013).
V. Sarou-Kanian, A.L. Rollet, M. Salanne, C. Simon, C. Bessada and P.A. Madden, Phys. Chem. Chem. Phys., 11, 11501 (2009).
M. Dixon and J.M. Gillan, Philos. Mag. Part B, 43, 1099 (1981).
N. Galamba, C.A. Nieto de Castro and J.F. Ely, J. Chem. Phys., 120, 8676 (2004).
N. Galamba, C. A. Nieto de Castro and J.F. Ely, J. Chem. Phys., 122, 224501 (2005).
D. Nevins and F.J. Spera, Mol. Simul., 33, 1261 (2007).
N. Ohtori, M. Salanne and P.A. Madden, J. Chem. Phys., 130, 1 (2009).
J. Wang, Z. Sun, G. Lu and J. Yu, J. Phys. Chem. B, 118, 10196 (2014).
F.G. Fumi and M.P. Tosi, J. Phys. Chem. Solids, 25, 31 (1964); M.P. Tosi and F.G. Fumi, J. Phys. Chem. Solids, 25, 45 (1964).
J.P. Hansen and I.R. McDonald, Theory of Simple Liquids, Academic Press: London, edn 3 (2005).
D. Frenkel and B. Smit, Understanding Molecular Simulation-From Algorithms to Applications, Academic Press (1996).
G. Ciccotti, G. Jacucci and I.R. McDonald, Phys. Rev. A, 13, 426 (1976).
O. Alcaraz and J. Trullas, J. Chem. Phys., 113, 10635 (2000).
J. Wang, J. Wu, Z. Sun, G. Lu and J. Yu, J. Mol. Liq., 209, 498 (2015).
M.P. Allen and D.J. Tlldesley, Computer Simulation of Liquids, Oxford University Press: Oxford, U.K. (1987).
J.M. Bockris and G.W. Hooper, Discuss. Faraday Soc., 32, 218 (1961).
J.O.M. Bockris, S.R. Richards and L. Nanis, J. Phys. Chem., 69, 1627 (1965).
F. Lantelme and P. Turq, J. Chem. Phys., 77, 3177 (1982).