Copyright (c) 2013 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Investigation of Reaction Rate of Bis(triethoxysilylpropyl)tetrasulphide in Silica-Filled Compound Using Pyrolysis-Gas Chromatography/Mass Spectrometry
Corresponding Author(s) : Sung-Ho Ha
Asian Journal of Chemistry,
Vol. 25 No. 9 (2013): Vol 25 Issue 9
Abstract
Pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) was used to examine the reaction rate of bis(triethoxy-silylpropyl)tetrasulphide in silica-filled rubber. The major pyrolysis product of bis(triethoxysilylpropyl)tetrasulphide, which is used as a silane coupling agent, was found to be an allyltriethoxysilane. Allyltriethoxysilane was also detected in the uncured silica-filled styrene-butadiene rubber compound with bis(triethoxysilylpropyl)tetrasulphide. To investigate the silica/silane reaction rate, the allytriethoxysilane content was used as an indicator and quantified by the relative peak area ratio of allytriethoxysilane/styrene. Styrene is a pyrolysis product of styrene-butadiene rubber. The results revealed an increase in reaction rate with increasing allytriethoxysilane content. Overall, pyrolysis-gas chromatography/mass spectrometry can be used to estimate the reaction rate of the silica/silane system.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J.H. Bachmann, J.W. Sellers, M.P. Wagner and R.F. Wolf, Rubber Chem. Technol., 32, 1286 (1959).
- B.B. Boonstra, H. Cochrane and E.M. Dánnenberg, Rubber Chem. Technol., 48, 558 (1975).
- M.P. Wagner, Rubber Chem. Technol., 49, 703 (1976).
- A. Voet, J.C. Morawski and J.B. Donnet, Rubber Chem. Technol., 50, 342 (1977).
- S. Wolff and M.-J. Wang, Rubber Chem. Technol., 65, 329 (1992).
- Y. Li, M.J. Wang, T. Zhang, F. Zhang and X. Fu, Rubber Chem. Technol., 67, 693 (1994).
- Y.-C. Ou, Z.-Z. Yu, A. Vidal and J.B. Donnet, Rubber Chem. Technol., 67, 834 (1994).
- L.P. Ziemansky, C.A Pageno and M.W. Raney, Rubber World., 163, 53 (1970).
- F. Thurn and S. Wolff, Kautsch Gummi Kunstst., 28, 733 (1975).
- S. Wolff, Rubber Chem. Technol., 69, 325 (1996).
- W.H. Waddell and L.R. Evans, Rubber Chem. Technol., 69, 377 (1996).
- H. Mouri and K. Akutagawa, Rubber Chem. Technol., 72, 960 (1999).
- A.S. Hashim, B. Azahari, Y. Ikeda and S. Kohjiya, Rubber Chem. Technol., 71, 289 (1998).
- S.-S. Choi, Kor. Polym. J., 8, 285 (2000).
- H.-D. Luginsland, J. Fröhlich and A. Wehmeier, Rubber Chem. Technol., 75, 563 (2002).
- A. Blume and Köln, In Proceedings of Kautschuk Gummi Kunststoffe: Kinetics of the Silica-Silane Reaction, DE, April, pp. 38-44 (2011).
- L.A.E.M. Reuvekamp, J.W. Brinke, P.J. Swaaij and J.W.M. Noordermeer, Rubber Chem. Technol., 75, 187 (2002).
- U. Goerl, A. Hunsche, A. Mueller and H.G. Koban, Rubber Chem. Technol., 70, 608 (1997).
- A. Hunsche, U. Goerl,A. Mueller, M. Knaack and Th. Goebel, Kautsch. Gummi Kunstst, 50, 881 (1997).
- S.C. Moldoveanu, Analytical Pyrolysis of Synthetic Organic Polymers, Techniques and Instrumentation in Analytical Chemistry, 25, Elsevier Publication (2005).
- S.W. Kim, G.S. Heo and G.H. Lee, J. Korean Chem. Soc., 41, 524 (1997).
- K.D. Jansson, C.P. Zawodny and T.P. Wampler, J. Anal. Appl. Pyrol., 79, 353 (2007).
- M. Herrera, G. Matuschek and A. Kettrup, J. Anal. Appl. Pyrol., 70, 35 (2003).
- R. Rial-Otero, M. Galesio, J.-L. Capelo and J. Simal-Gandara, Chromatographia, 75, 339 (2009).
- S.-S Choi and S.-H. Ha, Bull. Korean Chem. Soc., 27, 429 (2006).
- S.-S. Choi, J. Anal. Appl. Pyrol., 62, 319 (2002).
- S.-S. Choi, Polym. Test., 21, 201 (2002).
References
J.H. Bachmann, J.W. Sellers, M.P. Wagner and R.F. Wolf, Rubber Chem. Technol., 32, 1286 (1959).
B.B. Boonstra, H. Cochrane and E.M. Dánnenberg, Rubber Chem. Technol., 48, 558 (1975).
M.P. Wagner, Rubber Chem. Technol., 49, 703 (1976).
A. Voet, J.C. Morawski and J.B. Donnet, Rubber Chem. Technol., 50, 342 (1977).
S. Wolff and M.-J. Wang, Rubber Chem. Technol., 65, 329 (1992).
Y. Li, M.J. Wang, T. Zhang, F. Zhang and X. Fu, Rubber Chem. Technol., 67, 693 (1994).
Y.-C. Ou, Z.-Z. Yu, A. Vidal and J.B. Donnet, Rubber Chem. Technol., 67, 834 (1994).
L.P. Ziemansky, C.A Pageno and M.W. Raney, Rubber World., 163, 53 (1970).
F. Thurn and S. Wolff, Kautsch Gummi Kunstst., 28, 733 (1975).
S. Wolff, Rubber Chem. Technol., 69, 325 (1996).
W.H. Waddell and L.R. Evans, Rubber Chem. Technol., 69, 377 (1996).
H. Mouri and K. Akutagawa, Rubber Chem. Technol., 72, 960 (1999).
A.S. Hashim, B. Azahari, Y. Ikeda and S. Kohjiya, Rubber Chem. Technol., 71, 289 (1998).
S.-S. Choi, Kor. Polym. J., 8, 285 (2000).
H.-D. Luginsland, J. Fröhlich and A. Wehmeier, Rubber Chem. Technol., 75, 563 (2002).
A. Blume and Köln, In Proceedings of Kautschuk Gummi Kunststoffe: Kinetics of the Silica-Silane Reaction, DE, April, pp. 38-44 (2011).
L.A.E.M. Reuvekamp, J.W. Brinke, P.J. Swaaij and J.W.M. Noordermeer, Rubber Chem. Technol., 75, 187 (2002).
U. Goerl, A. Hunsche, A. Mueller and H.G. Koban, Rubber Chem. Technol., 70, 608 (1997).
A. Hunsche, U. Goerl,A. Mueller, M. Knaack and Th. Goebel, Kautsch. Gummi Kunstst, 50, 881 (1997).
S.C. Moldoveanu, Analytical Pyrolysis of Synthetic Organic Polymers, Techniques and Instrumentation in Analytical Chemistry, 25, Elsevier Publication (2005).
S.W. Kim, G.S. Heo and G.H. Lee, J. Korean Chem. Soc., 41, 524 (1997).
K.D. Jansson, C.P. Zawodny and T.P. Wampler, J. Anal. Appl. Pyrol., 79, 353 (2007).
M. Herrera, G. Matuschek and A. Kettrup, J. Anal. Appl. Pyrol., 70, 35 (2003).
R. Rial-Otero, M. Galesio, J.-L. Capelo and J. Simal-Gandara, Chromatographia, 75, 339 (2009).
S.-S Choi and S.-H. Ha, Bull. Korean Chem. Soc., 27, 429 (2006).
S.-S. Choi, J. Anal. Appl. Pyrol., 62, 319 (2002).
S.-S. Choi, Polym. Test., 21, 201 (2002).