Copyright (c) 2013 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Effects of Aggregate Structure and Dimension of Carbon Nanotubes on the Mechanical, Electrical and Thermal Properties of Rubber Composites
Corresponding Author(s) : Sung-Woo Kim
Asian Journal of Chemistry,
Vol. 25 No. 9 (2013): Vol 25 Issue 9
Abstract
A tyre tread compound, showing good performance and high electrical conductivity, was prepared with a high silica loading and a low loading of multi-wall carbon nanotube in order not to sacrifice the original mechanical properties of the rubber compound. We fabricated styrene-butadiene rubber/natural rubber composites containing carbon black as a general filler and two types of multi-wall carbon nanotube with different structure and dimension, entangled carbon nanotube with short length (<10 μm) and parallel-aligned carbon nanotube bundles with a long length (<120 μm) as a specific filler. The incorporation of the aligned multi-wall carbon nanotube into the high silica rubber compound, even at low loading (0.5 phr), improved the static dissipation to a level that could meet the requirements (<108 W) for tyres without a measurable decrease in the physical and dynamic properties. The abrasion resistance was also enhanced considerably by 15 % or more.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Iijima, Nature, 354, 56 (1991).
- O. Chauvet, J.M. Benoit and B. Corraze, Carbon, 42, 949 (2004).
- J.Z. Liu, Q.S. Zheng, L.F. Wang and Q. Jiang, J. Mech. Phys. Solids, 53, 123 (2005).
- C.Q. Sun, H.L. Bai, B.K. Tay and E.Y. Jiang, J. Phys. Chem. B, 107, 7544 (2003).
- N. Mingo and D.A. Broido, Nano Lett., 5, 1221 (2005).
- F. Cataldo, O. Ursini and G. Angelini, Fullerenes, Nanotubes Carbon Nanostructures, 17, 38 (2009).
- M.S.P. Shaffer, X. Fan and A.H. Windle, Carbon, 36, 1603 (1998).
- L. Cai, J.L. Bahr, Y. Yao and J.M. Tour, Chem. Mater., 14, 4235 (2002).
- E.T. Mickelson, C.B. Huffman,A.G. Rinzler, R.E. Smalley, R.H. Hauge and J.L. Margrave, Chem. Phys. Lett., 296, 188 (1998).
- J.L. Bahr, J. Yang, D.V. Kosynkin, M.J. Bronikowski, R.E. Smalley and J.M. Tour, J. Am. Chem. Soc., 123, 6536 (2001).
References
S. Iijima, Nature, 354, 56 (1991).
O. Chauvet, J.M. Benoit and B. Corraze, Carbon, 42, 949 (2004).
J.Z. Liu, Q.S. Zheng, L.F. Wang and Q. Jiang, J. Mech. Phys. Solids, 53, 123 (2005).
C.Q. Sun, H.L. Bai, B.K. Tay and E.Y. Jiang, J. Phys. Chem. B, 107, 7544 (2003).
N. Mingo and D.A. Broido, Nano Lett., 5, 1221 (2005).
F. Cataldo, O. Ursini and G. Angelini, Fullerenes, Nanotubes Carbon Nanostructures, 17, 38 (2009).
M.S.P. Shaffer, X. Fan and A.H. Windle, Carbon, 36, 1603 (1998).
L. Cai, J.L. Bahr, Y. Yao and J.M. Tour, Chem. Mater., 14, 4235 (2002).
E.T. Mickelson, C.B. Huffman,A.G. Rinzler, R.E. Smalley, R.H. Hauge and J.L. Margrave, Chem. Phys. Lett., 296, 188 (1998).
J.L. Bahr, J. Yang, D.V. Kosynkin, M.J. Bronikowski, R.E. Smalley and J.M. Tour, J. Am. Chem. Soc., 123, 6536 (2001).