Copyright (c) 2013 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Analysis of Lattice Temperature Effects on a GaInP/6H-SiC Strained Quantum-Well Lasers
Corresponding Author(s) : Saeid Marjani
Asian Journal of Chemistry,
Vol. 25 No. 9 (2013): Vol 25 Issue 9
Abstract
In this paper, simulative study on the effects of lattice temperature on a GaInP/6H-SiC strained quantum-well (QW) laser's device is presented. Loss mechanisms are severe in the edge-emitting lasers. As a consequence, the wall-plug efficiency is sensitive to changes in temperature. The lasers used in this work were separate-confinement quantum-well lasers with a single strained GaInP, located in a lattice-matched waveguide core and cladding region of 6H-SiC. This paper provides the key results of the wall-plug efficiency upon the lattice temperature.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- P.B. Klein, J. Appl. Phys., 103, 033702 (2008).
- P.G. Neudeck, in eds.: K.H.J. Bushchow, R.W. Cahn, M.C. Flemings, B. Ilschner, E.J. Kramer and S. Mahajan, Encyclopedia of Materials: Science and Technology, Elsevier Science, Vol. 9, p. 8508 (2001).
- M. Bhatnagar and B.J. Baliga, IEEE Transactions on Electron Devices, p. 40, (1993).
- T. Muranaka, Y. Kikuchi, T. Yoshizawa, N. Shirakawa and J. Akimitsu, Sci. Technol. Adv. Mater., 9, 044204 (2008).
- A.R. Adams, J. Electron. Lett., 22, 249 (1986).
- E. Yablonovich and E.O. Kane, J. Lightwave Technol., LT-4, 504 (1986).
- SILVACO International, ATLAS User's Manual, USA, SILVACO International Incorporated (2010).
- J. Piprek, Semiconductor Optoelectronic Devices: Introduction to Physics and Simulation, Ch. 3 Carrier Transport and Ch. 6 Heat Generation and Dissipation UCSB: Academic Press, pp. 49-50 and 141-147 (2003).
- G.R. Hadley, J. Opt. Lett., 20, 1483 (1995).
- H. Wenzel and H.J. Wunsche, IEEE J. Quantum Electron., 33, 1156 (1997).
- K. Iga, IEEE J Select. Topics Quantum Electron, 6, 1201 (2000).
- Y. Suematsu and A.R. Adams, Handbook of Semiconductor Lasers and Photonic Integrated Circuits, Chapman & Hall (1994).
References
P.B. Klein, J. Appl. Phys., 103, 033702 (2008).
P.G. Neudeck, in eds.: K.H.J. Bushchow, R.W. Cahn, M.C. Flemings, B. Ilschner, E.J. Kramer and S. Mahajan, Encyclopedia of Materials: Science and Technology, Elsevier Science, Vol. 9, p. 8508 (2001).
M. Bhatnagar and B.J. Baliga, IEEE Transactions on Electron Devices, p. 40, (1993).
T. Muranaka, Y. Kikuchi, T. Yoshizawa, N. Shirakawa and J. Akimitsu, Sci. Technol. Adv. Mater., 9, 044204 (2008).
A.R. Adams, J. Electron. Lett., 22, 249 (1986).
E. Yablonovich and E.O. Kane, J. Lightwave Technol., LT-4, 504 (1986).
SILVACO International, ATLAS User's Manual, USA, SILVACO International Incorporated (2010).
J. Piprek, Semiconductor Optoelectronic Devices: Introduction to Physics and Simulation, Ch. 3 Carrier Transport and Ch. 6 Heat Generation and Dissipation UCSB: Academic Press, pp. 49-50 and 141-147 (2003).
G.R. Hadley, J. Opt. Lett., 20, 1483 (1995).
H. Wenzel and H.J. Wunsche, IEEE J. Quantum Electron., 33, 1156 (1997).
K. Iga, IEEE J Select. Topics Quantum Electron, 6, 1201 (2000).
Y. Suematsu and A.R. Adams, Handbook of Semiconductor Lasers and Photonic Integrated Circuits, Chapman & Hall (1994).