Copyright (c) 2013 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Bio-Oil Upgrading Over Bi-Functional Catalyst in CO/H2O System
Corresponding Author(s) : Qingli Xu
Asian Journal of Chemistry,
Vol. 25 No. 7 (2013): Vol 25 Issue 7
Abstract
The liquid phase upgrading of a model bio-oil was studied over a series of supported Ni catalysts in the CO/H2O system. 6 % Ni/B206 catalyst showed the highest activity for deoxygenation, the oxygen content of the model oil decreasing from an initial value of 47.74 wt % to 3.76 wt % after upgrading. In addition, the reason for catalyst deactivation was investigated. The fresh and deactivation catalysts were analyzed by X-ray diffraction, Brunauer-Emmett-Teller, thermogravimetric analysis and scanning electron microscopy, which showed that the carbon deposition is the main reason for catalyst deactivation.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- F.X. Aguilar, N. Song and S. Shifley, Biomass Bioenergy, 35, 3708 (2011).
- S. Gautam, R. Pulkki, C. Shahi and M. Leitch, Biomass Bioenergy, 34, 1562 (2010).
- A. Jasinskas, A. Zaltauskas and A. Kryzeviciene, Biomass Bioenergy, 32, 981 (2008).
- B. Wahlund, J. Yan and M. Westermark, Biomass Bioenergy, 26, 531 (2004).
- S. Czernlk, J. Scahill and J. Diebold, J. Solar Energy Eng., 117, 2 (1995).
- L. Wang, B.S. Fu, G.M. Xiao and H. Liu, Asian J. Chem., 23, 4778 (2011).
- Q. Lu, X. Yang, C. Yang, Z. Zhang, X. Zhang and X. Zhu, J. Anal. Appl. Pyrolysis, 92, 430 (2011).
- A. Roberto, O. Marla, J.S.J. María, A. Gorka and B. Javier, Ind. Eng. Chem. Res., 39, 1925 (2000).
- D.S. Scott, J. Piskorz and D. Radlein, Ind. Eng. Chem. Process Des. Dev., 24, 581 (1985).
- B.M. Wagenaar, W. Prins and W.P.M. Vanswaaij, Chem. Eng. Sci., 49, 5109 (1994).
- J. Wang, M. Zhang, M. Chen, F. Min, S. Zhang, Z. Ren and Y. Yan, Thermochim. Acta, 444, 110 (2006).
- K. Sipila, E. Kuoppala, L. Fagernas and A. Oasmaa, Biomass Bioenergy, 14, 103 (1998).
- F.H. Mahfud, F. Ghijsen and H.J. Heeres, J. Mol. Catal. A, 264, 227 (2007).
- O.I. Senol, T.R. Viljava and A.O.I. Krause, Catal. Today, 100, 331 (2005).
- S. Vitolo, M. Seggiani, P. Frendiani, G. Ambrosinia and L. Politia, Fuel, 78, 1147 (1999).
- P.T. Williams and N. Nugranad, Energy, 25, 493 (2000).
- Y. Xu, T. Wang, L. Ma, Q. Zhang and L. Wang, Biomass Bioenergy, 33, 1030 (2009).
- Y. Yang, H. Luo, G. Tong, J.S. Kevin and C.T. Tye, Chin. J. Chem. Eng., 16, 733 (2008).
- C. Wu and R. Liu, Int. J. Hydrogen Energy, 35, 7386 (2010)
References
F.X. Aguilar, N. Song and S. Shifley, Biomass Bioenergy, 35, 3708 (2011).
S. Gautam, R. Pulkki, C. Shahi and M. Leitch, Biomass Bioenergy, 34, 1562 (2010).
A. Jasinskas, A. Zaltauskas and A. Kryzeviciene, Biomass Bioenergy, 32, 981 (2008).
B. Wahlund, J. Yan and M. Westermark, Biomass Bioenergy, 26, 531 (2004).
S. Czernlk, J. Scahill and J. Diebold, J. Solar Energy Eng., 117, 2 (1995).
L. Wang, B.S. Fu, G.M. Xiao and H. Liu, Asian J. Chem., 23, 4778 (2011).
Q. Lu, X. Yang, C. Yang, Z. Zhang, X. Zhang and X. Zhu, J. Anal. Appl. Pyrolysis, 92, 430 (2011).
A. Roberto, O. Marla, J.S.J. María, A. Gorka and B. Javier, Ind. Eng. Chem. Res., 39, 1925 (2000).
D.S. Scott, J. Piskorz and D. Radlein, Ind. Eng. Chem. Process Des. Dev., 24, 581 (1985).
B.M. Wagenaar, W. Prins and W.P.M. Vanswaaij, Chem. Eng. Sci., 49, 5109 (1994).
J. Wang, M. Zhang, M. Chen, F. Min, S. Zhang, Z. Ren and Y. Yan, Thermochim. Acta, 444, 110 (2006).
K. Sipila, E. Kuoppala, L. Fagernas and A. Oasmaa, Biomass Bioenergy, 14, 103 (1998).
F.H. Mahfud, F. Ghijsen and H.J. Heeres, J. Mol. Catal. A, 264, 227 (2007).
O.I. Senol, T.R. Viljava and A.O.I. Krause, Catal. Today, 100, 331 (2005).
S. Vitolo, M. Seggiani, P. Frendiani, G. Ambrosinia and L. Politia, Fuel, 78, 1147 (1999).
P.T. Williams and N. Nugranad, Energy, 25, 493 (2000).
Y. Xu, T. Wang, L. Ma, Q. Zhang and L. Wang, Biomass Bioenergy, 33, 1030 (2009).
Y. Yang, H. Luo, G. Tong, J.S. Kevin and C.T. Tye, Chin. J. Chem. Eng., 16, 733 (2008).
C. Wu and R. Liu, Int. J. Hydrogen Energy, 35, 7386 (2010)