Copyright (c) 2013 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Preparation and Magnetic Properties of the Flake-Like Nickel Nanocrystals
Corresponding Author(s) : Q. Chen
Asian Journal of Chemistry,
Vol. 25 No. 6 (2013): Vol 25 Issue 6
Abstract
Flake-like nickel nanocrystals with a diameter of approximately 1 μm were successfully obtained by reducing nickel salts in the presence of hydrazine hydrate under normal pressure. The flake-like nickel was characterized utilizing X-ray diffraction and scanning electron microscopy. Moreover, it was revealed that the novel flake-like nickel nanocrystals were of ferromagnetism with the saturation magnetization of 21.3 emu/g and the coercivity of 204.3 Oe by the magnetic hysteresis measurement at room temperature. The present approach has the advantages of fast reaction rate and low cost. The resulting nickel flakes might be potential as catalysts, magnetic storage materials and conductive fillers for shielding of electromagnetic interference.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- W. Xu, K.Y. Liew, H.F. Liu, T. Huang, C.T. Sun and Y.X. Zhao, Mater. Lett., 62, 2571 (2008).
- Y. Hu, H.S. Qian, T. Mei, J. Guo and T. White, Mater. Lett., 64, 1095 (2010).
- T. Hyeon, S.S. Lee, J. Park, Y. Chung and H.B. Na, J. Am. Chem. Soc., 123, 12798 (2001).
- V.F. Puntes, K.M. Krishnan and A.P. Alivisatos, Science, 291, 2115 (2001).
- R. Sabirianov, J. Magn. Magn. Mater., 300, 136 (2006).
- X.M. Lin, H. Claus, U. Welp, I.S. Beloborodov, W.K. Kwok and G.W. Crabtree, J. Phys. Chem. C, 111, 3548 (2007).
- N. Depalo, P. Carrieri, R. Comparelli, M. Striccoli, A. Agostiano and L. Bertinetti, Langmuir, 27, 6962 (2011).
- T.J. Zhu, X. Chen, X.Y. Meng, X.B. Zhao and J. He, Cryst. Growth. Des., 10, 3727 (2010).
- Y. Hou, H. Kondoh, T. Ohta and S. Gao, Appl. Surf. Sci., 241, 218 (2005).
- G.S. Zhang, X.T. Zhao and L.J. Zhao, Mater. Lett., 66, 267 (2012).
- R. Yi, R.R. Shi, G.H. Gao, N. Zhang, X.M. Cui and Y.H. He, J. Phys. Chem. C, 113, 1222 (2009).
- B. Zhang, W. Dai, X.C. Ye, W.Y. Hou and Y.Xie, J. Phys. Chem. B, 109, 22830 (2005).
- X.M. Ni, Q.B. Zhao, H.G. Zheng, B.B. Li, J.M. Song and D.E. Zhang, Eur. J. Inorg. Chem., 23, 4788 (2005).
- W. Zhou, L. He, R. Cheng, L. Guo, C.P. Chen and J.L. Wang, J. Phys. Chem. C, 113, 17355 (2009).
- H.L. Niu, Q.W. Chen, M. Ning, Y.S. Jia and X.J. Wang, J. Phys. Chem.B, 108, 3996 (2004).
- L.P. Zhu, H.M. Xiao and S.Y. Fu, Eur. J. Inorg. Chem., 25, 3947 (2007).
References
W. Xu, K.Y. Liew, H.F. Liu, T. Huang, C.T. Sun and Y.X. Zhao, Mater. Lett., 62, 2571 (2008).
Y. Hu, H.S. Qian, T. Mei, J. Guo and T. White, Mater. Lett., 64, 1095 (2010).
T. Hyeon, S.S. Lee, J. Park, Y. Chung and H.B. Na, J. Am. Chem. Soc., 123, 12798 (2001).
V.F. Puntes, K.M. Krishnan and A.P. Alivisatos, Science, 291, 2115 (2001).
R. Sabirianov, J. Magn. Magn. Mater., 300, 136 (2006).
X.M. Lin, H. Claus, U. Welp, I.S. Beloborodov, W.K. Kwok and G.W. Crabtree, J. Phys. Chem. C, 111, 3548 (2007).
N. Depalo, P. Carrieri, R. Comparelli, M. Striccoli, A. Agostiano and L. Bertinetti, Langmuir, 27, 6962 (2011).
T.J. Zhu, X. Chen, X.Y. Meng, X.B. Zhao and J. He, Cryst. Growth. Des., 10, 3727 (2010).
Y. Hou, H. Kondoh, T. Ohta and S. Gao, Appl. Surf. Sci., 241, 218 (2005).
G.S. Zhang, X.T. Zhao and L.J. Zhao, Mater. Lett., 66, 267 (2012).
R. Yi, R.R. Shi, G.H. Gao, N. Zhang, X.M. Cui and Y.H. He, J. Phys. Chem. C, 113, 1222 (2009).
B. Zhang, W. Dai, X.C. Ye, W.Y. Hou and Y.Xie, J. Phys. Chem. B, 109, 22830 (2005).
X.M. Ni, Q.B. Zhao, H.G. Zheng, B.B. Li, J.M. Song and D.E. Zhang, Eur. J. Inorg. Chem., 23, 4788 (2005).
W. Zhou, L. He, R. Cheng, L. Guo, C.P. Chen and J.L. Wang, J. Phys. Chem. C, 113, 17355 (2009).
H.L. Niu, Q.W. Chen, M. Ning, Y.S. Jia and X.J. Wang, J. Phys. Chem.B, 108, 3996 (2004).
L.P. Zhu, H.M. Xiao and S.Y. Fu, Eur. J. Inorg. Chem., 25, 3947 (2007).