Copyright (c) 2013 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Adsorption Isotherms of Some Non-Steroidal Drugs on Single Wall Carbon Nanotube
Corresponding Author(s) : Mehdi Vadi
Asian Journal of Chemistry,
Vol. 25 No. 6 (2013): Vol 25 Issue 6
Abstract
The objective of this work was to study the adsorption behaviour of non-steroidal antiinflammatory drugs (NSAIDs) e.g., aspirin, diclofenac and naproxen by single walled carbon nanotube as the function of initial concentration of adsorbate through adsorption isotherms. The amount of NSAIDs adsorbed from aqueous solution increases with the increase of the initial NSAIDs concentration. The adsorbent capacity was determined using the parameters of Langmuir, Freundlich and Temkin adsorption isotherm models that the NSAIDs adsorption isotherm data fit best to the Freundlich isotherm model. The results showed that aspirin has maximum adsorption rate of single wall carbon nanotube.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X.S. Wang, Q.Q. Li, J. Xie, Z. Jin, J.Y. Wang, Y. Li, K.L. Jiang and S.S. Fan, Nano Lett., 9, 3137 (2009).
- C.N.R. Rao, B.C. Satishkumar, A. Govindaraj and M. Nath, Phys. Chem., 2, 78 (2001).
- N. Bendiab, E. Anglaret, J.-L. Bantignies, A. Zahab, J.L. Sauvajol, P. Petit, C. Mathis and S. Lefrant, Phys. Rev. B, 64, 245424 (2001).
- A.S. Claye, N.M. Nemes, A. Janossy and J.E. Fischer, Phys. Rev. B, 62, R4845 (2002).
- A.M. Rao, P.C. Eklund, S. Bandow, A. Thess and R.E. Smalley, Nature, 3881, 257 (1997).
- A. Wadhawan, R.E. Stallcup and J.M. Perez, Appl. Phys. Lett., 78, 108 (2001).
- A. Cao, H. Zhu, X. Zhang, X. Li, D. Ruan, C. Xu, B. Wer, J. Liang and D. Wu, Chem. Phys. Lett., 342, 510 (2001).
- Q.-H. Yang, P.-X. Hou, S. Bai, M.-Z. Wang and H.-M. Cheng, Chem. Phys. Lett., 345, 18 (2001).
- X.Y. Zhu, S.M. Lee and T. Frauenheim, Phys. Rev. Lett., 85, 2757 (2000).
- S. Talapatra and A.D. Migone, Phys. Rev. B, 56, 045416 (2002).
- A.C. Dillon and M.J. Heben, Appl. Phys. A, 72, 133 (2001).
- J.L. Bahr and J.M. Tour. J. Mater. Chem., 12, 1952 (2002).
- J. Stuart and P.T. Warden, Phys. Sports Med., 38, 132 (2010).
- Y.S. Hoc, T. Huang and H.W. Huang, Process Biochem., 37, 1421 (2002)
- Langmuir, J. Am. Chem. Soc., 38, 2221 (1916).
- H.M.F. Freundlich, Zeitsch. Physik. Chem., 57, 385 (1906).
- B.H. Hameed, J. Hazard. Mater., 162, 939 (2009).
References
X.S. Wang, Q.Q. Li, J. Xie, Z. Jin, J.Y. Wang, Y. Li, K.L. Jiang and S.S. Fan, Nano Lett., 9, 3137 (2009).
C.N.R. Rao, B.C. Satishkumar, A. Govindaraj and M. Nath, Phys. Chem., 2, 78 (2001).
N. Bendiab, E. Anglaret, J.-L. Bantignies, A. Zahab, J.L. Sauvajol, P. Petit, C. Mathis and S. Lefrant, Phys. Rev. B, 64, 245424 (2001).
A.S. Claye, N.M. Nemes, A. Janossy and J.E. Fischer, Phys. Rev. B, 62, R4845 (2002).
A.M. Rao, P.C. Eklund, S. Bandow, A. Thess and R.E. Smalley, Nature, 3881, 257 (1997).
A. Wadhawan, R.E. Stallcup and J.M. Perez, Appl. Phys. Lett., 78, 108 (2001).
A. Cao, H. Zhu, X. Zhang, X. Li, D. Ruan, C. Xu, B. Wer, J. Liang and D. Wu, Chem. Phys. Lett., 342, 510 (2001).
Q.-H. Yang, P.-X. Hou, S. Bai, M.-Z. Wang and H.-M. Cheng, Chem. Phys. Lett., 345, 18 (2001).
X.Y. Zhu, S.M. Lee and T. Frauenheim, Phys. Rev. Lett., 85, 2757 (2000).
S. Talapatra and A.D. Migone, Phys. Rev. B, 56, 045416 (2002).
A.C. Dillon and M.J. Heben, Appl. Phys. A, 72, 133 (2001).
J.L. Bahr and J.M. Tour. J. Mater. Chem., 12, 1952 (2002).
J. Stuart and P.T. Warden, Phys. Sports Med., 38, 132 (2010).
Y.S. Hoc, T. Huang and H.W. Huang, Process Biochem., 37, 1421 (2002)
Langmuir, J. Am. Chem. Soc., 38, 2221 (1916).
H.M.F. Freundlich, Zeitsch. Physik. Chem., 57, 385 (1906).
B.H. Hameed, J. Hazard. Mater., 162, 939 (2009).