Copyright (c) 2013 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Studies on the Binding Properties of Temozolomide with DNA
Corresponding Author(s) : Yan-Cheng Liu
Asian Journal of Chemistry,
Vol. 25 No. 5 (2013): Vol 25 Issue 5
Abstract
The interaction mechanism of temozolomide with DNA was studied by UV-VIS absorption spectroscopy, fluorescence emission spectroscopy, circular dichromic absorption spectroscopy and agarose gel electrophoresis method. The results of spectral analyses suggest moderate intercalative binding ability of temozolomide with ct-DNA, but without considerable exterior electrostatic interaction between temozolomide and ct-DNA. While the result of gel electrophoretic mobility shift assay on pUC19 DNA suggests covalent binding mode of temozolomide to DNA. Based on the above research results, a multi-mode binding mechanism of temozolomide to DNA macromolecule was concluded.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- L. Strekowski and B. Wilson, Mutat. Res., 623, 3 (2007).
- S. Wang, B.S. Gaylord and G.C. Bazan, J. Am. Chem. Soc., 126, 5446 (2004).
- C. Sansom, The Lancet, 353, 472 (1999).
- F.M. Iwamoto, A.M. Omuro, J.J. Raizer, C.P. Nolan, A. Hormigo, A.B. Lassman, I.T. Gavrilovic and L.E. Abrey, J. Neurooncol., 87, 85 (2008).
- P.R. Lowe, C.E. Sansom, C.H. Schwalbe, M.F.G. Stevens and A.S. Clark, J. Med. Chem., 35, 3377 (1992).
- B.J. Denny, R.T. Wheelhouse, M.F.G. Stevens, L.L.H. Tsang and J.A. Slack, Biochemistry, 33, 9045 (1994).
- C.V. Kumar, J.K. Barton and N.J. Turro, J. Am. Chem. Soc., 107, 5518 (1985).
- M.F. Reichmann, S.A. Rice, C.A. Thomas and P. Doty, J. Am. Chem. Soc., 76, 3047 (1954).
- C.V. Kumar and E.H. Asuncion, J. Am. Chem. Soc., 115, 8547 (1993).
- (a) O. Stern and M.Z. Volmer, Z. Phys., 20, 183 (1919); (b) J.R. Lakowicz and G. Weber, Biochemistry, 12, 4161 (1973).
- C.X. Zhang and S.J. Lippard, Curr. Opin. Chem. Biol., 7, 481 (2003).
- I. Kock, D. Heber, M. Weide, U. Wolschendorf and B. Clement, J. Med. Chem., 48, 2772 (2005).
- G.I. Pascu, A.C.G. Hotze, C. Sanchez-Cano, B.M. Kariuki and M.J. Hannon, Angew. Chem. Int. Ed., 46, 4374 (2007).
- M.A. Galindo, D. Olea, M.A. Romero, J. Gomez, P. del Castillo, M.J. Hannon, A. Rodger, F. Zamora and J.A.R. Navarro, Chem. Eur. J., 13, 5075 (2007).
- D.L. Ma and C.M. Che, Chem. Eur. J., 9, 6133 (2003).
- J. Olmsted and D.R. Kearns, Biochemistry, 16, 3647 (1977).
- Z.F. Chen, Y.C. Liu, L.M. Liu, H.S. Wang, S.H. Qin, B.L. Wang, H.D. Bian, B. Yang, H.K. Fun, H.G. Liu, H. Liang and C. Orvig, Dalton Trans., 262 (2009).
- (a) D.L. Boger, B.E. Fink, S.R. Brunette, W.C. Tse and M.P. Hedrick, J. Am. Chem. Soc., 123, 5878 (2001); (b) G.H. Clever, Y. Söltl, H. Burks, W. Spahl and T. Carell, Chem. Eur. J., 12, 8708 (2006).
- V. Rajendiran, M. Murali, E. Suresh, M. Palaniandavar, V.S. Periasamy and M.A. Akbarsha, Dalton Trans., 2157 (2008).
- L. Messori, P. Orioli, C. Tempi and G. Marcon, Biochem. Biophys. Res. Commun., 281, 352 (2001).
- Y.M. Zhao, J.H. Zhu, W.J. He, Z. Yang, Y.G. Zhu, Y.Z. Li, J.F. Zhang and Z.J. Guo, Chem. Eur. J., 12, 6621 (2006).
- C.K.L. Li, R.W.Y. Sun, S.C.F. Kui, N.Y. Zhu and C.M. Che, Chem. Eur. J., 12, 5253 (2006).
- Y.C. Liu, Z.F. Chen, L.M. Liu, Y. Peng, X. Hong, B. Yang, H.G. Liu, H. Liang and C. Orvig, Dalton Trans., 10813 (2009).
References
L. Strekowski and B. Wilson, Mutat. Res., 623, 3 (2007).
S. Wang, B.S. Gaylord and G.C. Bazan, J. Am. Chem. Soc., 126, 5446 (2004).
C. Sansom, The Lancet, 353, 472 (1999).
F.M. Iwamoto, A.M. Omuro, J.J. Raizer, C.P. Nolan, A. Hormigo, A.B. Lassman, I.T. Gavrilovic and L.E. Abrey, J. Neurooncol., 87, 85 (2008).
P.R. Lowe, C.E. Sansom, C.H. Schwalbe, M.F.G. Stevens and A.S. Clark, J. Med. Chem., 35, 3377 (1992).
B.J. Denny, R.T. Wheelhouse, M.F.G. Stevens, L.L.H. Tsang and J.A. Slack, Biochemistry, 33, 9045 (1994).
C.V. Kumar, J.K. Barton and N.J. Turro, J. Am. Chem. Soc., 107, 5518 (1985).
M.F. Reichmann, S.A. Rice, C.A. Thomas and P. Doty, J. Am. Chem. Soc., 76, 3047 (1954).
C.V. Kumar and E.H. Asuncion, J. Am. Chem. Soc., 115, 8547 (1993).
(a) O. Stern and M.Z. Volmer, Z. Phys., 20, 183 (1919); (b) J.R. Lakowicz and G. Weber, Biochemistry, 12, 4161 (1973).
C.X. Zhang and S.J. Lippard, Curr. Opin. Chem. Biol., 7, 481 (2003).
I. Kock, D. Heber, M. Weide, U. Wolschendorf and B. Clement, J. Med. Chem., 48, 2772 (2005).
G.I. Pascu, A.C.G. Hotze, C. Sanchez-Cano, B.M. Kariuki and M.J. Hannon, Angew. Chem. Int. Ed., 46, 4374 (2007).
M.A. Galindo, D. Olea, M.A. Romero, J. Gomez, P. del Castillo, M.J. Hannon, A. Rodger, F. Zamora and J.A.R. Navarro, Chem. Eur. J., 13, 5075 (2007).
D.L. Ma and C.M. Che, Chem. Eur. J., 9, 6133 (2003).
J. Olmsted and D.R. Kearns, Biochemistry, 16, 3647 (1977).
Z.F. Chen, Y.C. Liu, L.M. Liu, H.S. Wang, S.H. Qin, B.L. Wang, H.D. Bian, B. Yang, H.K. Fun, H.G. Liu, H. Liang and C. Orvig, Dalton Trans., 262 (2009).
(a) D.L. Boger, B.E. Fink, S.R. Brunette, W.C. Tse and M.P. Hedrick, J. Am. Chem. Soc., 123, 5878 (2001); (b) G.H. Clever, Y. Söltl, H. Burks, W. Spahl and T. Carell, Chem. Eur. J., 12, 8708 (2006).
V. Rajendiran, M. Murali, E. Suresh, M. Palaniandavar, V.S. Periasamy and M.A. Akbarsha, Dalton Trans., 2157 (2008).
L. Messori, P. Orioli, C. Tempi and G. Marcon, Biochem. Biophys. Res. Commun., 281, 352 (2001).
Y.M. Zhao, J.H. Zhu, W.J. He, Z. Yang, Y.G. Zhu, Y.Z. Li, J.F. Zhang and Z.J. Guo, Chem. Eur. J., 12, 6621 (2006).
C.K.L. Li, R.W.Y. Sun, S.C.F. Kui, N.Y. Zhu and C.M. Che, Chem. Eur. J., 12, 5253 (2006).
Y.C. Liu, Z.F. Chen, L.M. Liu, Y. Peng, X. Hong, B. Yang, H.G. Liu, H. Liang and C. Orvig, Dalton Trans., 10813 (2009).