Copyright (c) 2013 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Water-Dispersible Ru(0) Nanorods With High Aspect Ratio: Microwave Synthesis, Characterization, Formation Mechanism and Catalytic Activity
Corresponding Author(s) : Shuge Peng
Asian Journal of Chemistry,
Vol. 25 No. 5 (2013): Vol 25 Issue 5
Abstract
Water-dispersible Ru(0) nanorods with high aspect ratio have been successfully prepared by alcohol reduction using microwave heating. For the alcohol reduction, n-propanol was used as solvent and reducer and poly(N-vinyl-2-pyrrolidone) were used as stabilizer. The effects of the reactant concentrations on the morphology and size of the Ru(0) nanorods were discussed. The catalytic activity of water-dispersible Ru(0) nanorods was also investigated in hydrogen generation from the hydrolysis of sodium borohydride. The structure and morphology of the prepared samples were characterized by transmission electron microscopy, X-ray photoelectron spectrum, Fourier transform infrared spectrum (FT-IR) and elemental analysis (ICP-AES). A possible formation mechanism for the Ru(0) nanorods based on the experimental results was also proposed. The water-dispersible Ru(0) nanorods provided a lower apparent activation energy (Ea = 33.4 ± 1 kJ/mol) than bulk Ru(0) metal and other reported Ru-based supported catalysts for the hydrolysis of NaBH4.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Xia, Y. Xiong, B. Lim and S. E. Skrabalak, Angew. Chem. Int. Ed., 47, 2 (2008).
- I. Rossetti, F. Mangiarini and L. Forni, Appl. Catal. A, 323, 219 (2007).
- S. Miao, Z. Liu, B. Han, J. Huang, Z. Sun, J. Zhang and T. Jiang, Angew. Chem. Int. Ed., 45, 266 (2006).
- C. Roth, N. Benker, R. Theissmann, R.J. Nichols and D.J. Schiffrin, Langmuir, 24, 2191 (2008).
- C.T. Campbell, S.C. Parker and D.E. Starr, Science, 811, 298 (2002).
- A. Zecchina, E. Groppo and S. Bordiga, Chem. Eur. J., 13, 2440 (2007).
- N.R. Jana, L. Gearheart and C.J. Murphy, Chem. Commun., 617 (2001).
- M.N. Nadagouda and R.S. Varma, Green Chem., 8, 516 (2006).
- R. Harpeness, Z. Peng, X. Liu, V.G. Pol, Y. Koltypin and A. Gedanken, J. Colloid Interf. Sci., 287, 678 (2005).
- S. Peng, J. Liu, X. Liu, Y. Zhang and J. Zhang, Adv. Mater. Res., 197- 198, 1577 (2011).
- A.N. Grace and K. Pandian, Mater. Chem. Phys., 104, 191 (2007).
- Y. Zhang, J. Yu, H. Niu and H. Liu, J. Colloid Interf. Sci., 313, 503 (2007).
- Ö. Metin and S. Özkar, J. Mol. Catal. A: Chem., 295, 39 (2008).
- F. Fievet, J.P. Lagier, B. Blin, B. Beaudoin and M. Figlarz, Solid State Ionics, 32/33, 198 (1989).
- M. Tsuji, M. Hashimoto, Y. Nishizawa and T. Tsuji, Mater. Lett., 58, 2326 (2004).
- S. Özkar and M. Zahmakiran, J. Alloys Comp., 404-406, 728 (2005).
- Z. Liu, B. Guo, S.H. Chan, E.H. Tang and L. Hong, J. Power Sources, 176, 306 (2008).
- S.C. Amendola, S.L. Sharp-Goldman, M.S. Janjua, N.C. Spencer, M.T. Kelly, P.J. Petillo and M. Binder, Int. J. Hydrogen Energy, 25, 969 (2000).
- C.L. Hsueh, C.Y. Chen, J.R. Ku, S.F. Tsai, Y.Y. Hsu, F.H. Tsau and M.S. Jeng, J. Power Sources, 177, 485 (2008).
- U.B. Demirci and F. Garin, J. Mol. Catal. A, 279, 57 (2005).
- J.S. Zhang, W.N. Delgass, T.S. Fisher and J.P. Gore, J. Power Sources, 164, 772 (2007).
- Y. Liang, H.-B. Dai, L.-P. Ma, P. Wang and H.-M. Cheng, Int. J. Hydrogen Energy, 35, 3023 (2010).
References
Y. Xia, Y. Xiong, B. Lim and S. E. Skrabalak, Angew. Chem. Int. Ed., 47, 2 (2008).
I. Rossetti, F. Mangiarini and L. Forni, Appl. Catal. A, 323, 219 (2007).
S. Miao, Z. Liu, B. Han, J. Huang, Z. Sun, J. Zhang and T. Jiang, Angew. Chem. Int. Ed., 45, 266 (2006).
C. Roth, N. Benker, R. Theissmann, R.J. Nichols and D.J. Schiffrin, Langmuir, 24, 2191 (2008).
C.T. Campbell, S.C. Parker and D.E. Starr, Science, 811, 298 (2002).
A. Zecchina, E. Groppo and S. Bordiga, Chem. Eur. J., 13, 2440 (2007).
N.R. Jana, L. Gearheart and C.J. Murphy, Chem. Commun., 617 (2001).
M.N. Nadagouda and R.S. Varma, Green Chem., 8, 516 (2006).
R. Harpeness, Z. Peng, X. Liu, V.G. Pol, Y. Koltypin and A. Gedanken, J. Colloid Interf. Sci., 287, 678 (2005).
S. Peng, J. Liu, X. Liu, Y. Zhang and J. Zhang, Adv. Mater. Res., 197- 198, 1577 (2011).
A.N. Grace and K. Pandian, Mater. Chem. Phys., 104, 191 (2007).
Y. Zhang, J. Yu, H. Niu and H. Liu, J. Colloid Interf. Sci., 313, 503 (2007).
Ö. Metin and S. Özkar, J. Mol. Catal. A: Chem., 295, 39 (2008).
F. Fievet, J.P. Lagier, B. Blin, B. Beaudoin and M. Figlarz, Solid State Ionics, 32/33, 198 (1989).
M. Tsuji, M. Hashimoto, Y. Nishizawa and T. Tsuji, Mater. Lett., 58, 2326 (2004).
S. Özkar and M. Zahmakiran, J. Alloys Comp., 404-406, 728 (2005).
Z. Liu, B. Guo, S.H. Chan, E.H. Tang and L. Hong, J. Power Sources, 176, 306 (2008).
S.C. Amendola, S.L. Sharp-Goldman, M.S. Janjua, N.C. Spencer, M.T. Kelly, P.J. Petillo and M. Binder, Int. J. Hydrogen Energy, 25, 969 (2000).
C.L. Hsueh, C.Y. Chen, J.R. Ku, S.F. Tsai, Y.Y. Hsu, F.H. Tsau and M.S. Jeng, J. Power Sources, 177, 485 (2008).
U.B. Demirci and F. Garin, J. Mol. Catal. A, 279, 57 (2005).
J.S. Zhang, W.N. Delgass, T.S. Fisher and J.P. Gore, J. Power Sources, 164, 772 (2007).
Y. Liang, H.-B. Dai, L.-P. Ma, P. Wang and H.-M. Cheng, Int. J. Hydrogen Energy, 35, 3023 (2010).