Copyright (c) 2013 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Substituent Effect on Hole Mobility of Conjugated Polymers in Photovoltaic Cells
Corresponding Author(s) : Hui Cao
Asian Journal of Chemistry,
Vol. 25 No. 4 (2013): Vol 25 Issue 4
Abstract
In this work, we have theoretically investigated the substituent effect on hole mobility of the conjugated alternating polymers typically applied in photovoltaic cells. We found that both linear and nonlinear behaviour of binding energy of polarons with respect to their extension size in two series of polymers. The resistances in the process of polaron's jumping between polymer chains are thus different. The experimental relative hole mobility of two kinds of polymers are well explained. Analysis of substituent effect provides insight into obtaining better hole-transport conjugated polymers in future.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- N. Agrait, A.L. Yeyati and J.M. ven Ruitenbeek, Phys. Rep., 81, 377 (2003).
- M.C. Scharber, D. Muhlbacher, M. Koppe, P. Denk, C. Waldauf, A.J. Heeger and C.J. Brabec, Adv. Mater., 18, 789 (2006).
- S. Gunes, H. Neugebauer and N.S. Sariciftci, Chem. Rev., 107, 1324 (2007).
- R. Kroon, M. Lenes, J.C. Hummelen, P.W.M. Blom and B. DeBoer, Polym. Rev., 48, 531 (2008).
- A.C. Mayer, S.R. Scully, B.E. Hardin, M.W. Rowell and M.D. McGehee, Mater. Today, 10, 28 (2007).
- B. Kippelen and J.L. Bredas, Energy Environ. Sci., 2, 251 (2009).
- L.J.A. Koster, E.C.P. Smits, V.D. Mihailetchi and P.W. Blom, Phys. Rev. B., 72, 085205 (2005).
- N. Kenji, O. Hiromichi, T. Akihiro, K. Toshio, H. Masahiro and H. Hideo, Nature, 432, 488 (2004).
- C. Hsiang-Yu, H. Jianhui, Zh. Shaoqing, L. Yongye, Y. Guanwen, Y. Yang, Y. Luping, W. Yue and L. Gang, Nat. Photonics, 3, 649 (2009).
- J. Peet, J.Y. Kim, N.E. Coates, W.L. Ma, D. Moses,A.J. Heeger and G.C. Bazan, Nat. Mater., 6, 497 (2007).
- C.J. Brabec, N.S. Sariciftci and J.C. Hummelen, Adv. Funct. Mater., 11, 15 (2001).
- H. Hoppe and N.S.J. Sariciftci, Mater. Res., 19, 1924 (2004).
- K.M. Coakley and M.D. McGehee, Chem. Mater., 16, 4533 (2004).
- L.Q. Yang, H.X. Zhou, S.C. Price and W. You, J. Am. Chem. Soc., 134, 5432 (2012).
- P. Ding, C.C. Chu, B. Liu, B. Peng, Y.P. Zou, Y.H. He, K.C. Zhou and C.S. Hsu, Macromol. Chem. Phys., 211, 2555 (2010).
- M.M. Wienk, J.M.K. Wiljan, J.H. Verhees, J. Knol, J.C. Hummelen, P.A.V. Hal and R.A.J. Janssen, Angew. Chem. Int. Ed., 42, 3371 (2003).
- S.E. Shaheen, C.J. Brabec, N.S. Sariciftci, F. Padinger, T. Fromherz and J.C. Hummelen, Appl. Phys. Lett., 78, 841 (2001).
- W. Ma, C. Yang, X. Gong, K. Lee and A.J. Heeger, Adv. Funct. Mater., 15, 1617 (2005).
- M. Reyes-Reyes, K. Kim and D.L. Carroll, Appl. Phys. Lett., 87, 083506 (2005).
- G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery and Y. Yang, Nat. Mater., 4, 864 (2005).
- W. Ma, C. Yang, X. Gong, K. Lee and A.J. Heeger, Adv. Funct. Mater., 15, 1617 (2005).
- J. Alstrup, K. Norrman, M. Jorgensen and F.C. Krebs, Sol. Energy Mater., 90, 2777 (2006).
- M.L. Chabinyc, R.A. Street and J.E. Northrup, Appl. Phys. Lett., 90, 123508 (2007).
- N. Blouin, A. Michaud and M. Leclerc, Adv. Mater., 19, 2295 (2007).
- J. Hou, H.Y. Chen, S. Zhang and Y. Yang, J. Am. Chem. Soc., 130, 16144 (2008).
- J.W. Chen and Y. Cao, Acc. Chem. Res., 42, 1709 (2009).
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui,A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu,A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez and J.A. Pople, Gaussian 03, Revision D.01. Gaussian, Inc.: Pittsburgh, PA (2003).
- G.L. Zhang, J. Ma and Y.S. Jiang, Macromolecules, 36, 2130 (2003).
- G.R. Hutchison, Y.J. Zhao, B. Delley, A.J. Freeman, M.A. Ratner and T.J. Marks, Phys. Rev. B., 68, 035204 (2003).
- S. Yang, P. Olishevski and M. Kertesz, Synth. Met., 141, 171 (2004).
- J. Ma, S. Li and Y. Jiang, Macromolecules, 35, 1109 (2002).
- H. Cao, J. Ma, G.L. Zhang and Y.S. Jiang, Macromolecules, 38, 1123 (2005).
- M.E. Casida, C. Jamorski, K.C. Casida and K.R. Salahub, J. Chem. Phys., 108, 4439 (1998).
- D.J. Tozer and N.C. Handy, J. Chem. Phys., 109, 10180 (1998).
- J.L. Brédas, J.E. Norton, J.C. Cornil and V. Coropceanu, Accou. Chem. Res., 42, 1691 (2009).
References
N. Agrait, A.L. Yeyati and J.M. ven Ruitenbeek, Phys. Rep., 81, 377 (2003).
M.C. Scharber, D. Muhlbacher, M. Koppe, P. Denk, C. Waldauf, A.J. Heeger and C.J. Brabec, Adv. Mater., 18, 789 (2006).
S. Gunes, H. Neugebauer and N.S. Sariciftci, Chem. Rev., 107, 1324 (2007).
R. Kroon, M. Lenes, J.C. Hummelen, P.W.M. Blom and B. DeBoer, Polym. Rev., 48, 531 (2008).
A.C. Mayer, S.R. Scully, B.E. Hardin, M.W. Rowell and M.D. McGehee, Mater. Today, 10, 28 (2007).
B. Kippelen and J.L. Bredas, Energy Environ. Sci., 2, 251 (2009).
L.J.A. Koster, E.C.P. Smits, V.D. Mihailetchi and P.W. Blom, Phys. Rev. B., 72, 085205 (2005).
N. Kenji, O. Hiromichi, T. Akihiro, K. Toshio, H. Masahiro and H. Hideo, Nature, 432, 488 (2004).
C. Hsiang-Yu, H. Jianhui, Zh. Shaoqing, L. Yongye, Y. Guanwen, Y. Yang, Y. Luping, W. Yue and L. Gang, Nat. Photonics, 3, 649 (2009).
J. Peet, J.Y. Kim, N.E. Coates, W.L. Ma, D. Moses,A.J. Heeger and G.C. Bazan, Nat. Mater., 6, 497 (2007).
C.J. Brabec, N.S. Sariciftci and J.C. Hummelen, Adv. Funct. Mater., 11, 15 (2001).
H. Hoppe and N.S.J. Sariciftci, Mater. Res., 19, 1924 (2004).
K.M. Coakley and M.D. McGehee, Chem. Mater., 16, 4533 (2004).
L.Q. Yang, H.X. Zhou, S.C. Price and W. You, J. Am. Chem. Soc., 134, 5432 (2012).
P. Ding, C.C. Chu, B. Liu, B. Peng, Y.P. Zou, Y.H. He, K.C. Zhou and C.S. Hsu, Macromol. Chem. Phys., 211, 2555 (2010).
M.M. Wienk, J.M.K. Wiljan, J.H. Verhees, J. Knol, J.C. Hummelen, P.A.V. Hal and R.A.J. Janssen, Angew. Chem. Int. Ed., 42, 3371 (2003).
S.E. Shaheen, C.J. Brabec, N.S. Sariciftci, F. Padinger, T. Fromherz and J.C. Hummelen, Appl. Phys. Lett., 78, 841 (2001).
W. Ma, C. Yang, X. Gong, K. Lee and A.J. Heeger, Adv. Funct. Mater., 15, 1617 (2005).
M. Reyes-Reyes, K. Kim and D.L. Carroll, Appl. Phys. Lett., 87, 083506 (2005).
G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery and Y. Yang, Nat. Mater., 4, 864 (2005).
W. Ma, C. Yang, X. Gong, K. Lee and A.J. Heeger, Adv. Funct. Mater., 15, 1617 (2005).
J. Alstrup, K. Norrman, M. Jorgensen and F.C. Krebs, Sol. Energy Mater., 90, 2777 (2006).
M.L. Chabinyc, R.A. Street and J.E. Northrup, Appl. Phys. Lett., 90, 123508 (2007).
N. Blouin, A. Michaud and M. Leclerc, Adv. Mater., 19, 2295 (2007).
J. Hou, H.Y. Chen, S. Zhang and Y. Yang, J. Am. Chem. Soc., 130, 16144 (2008).
J.W. Chen and Y. Cao, Acc. Chem. Res., 42, 1709 (2009).
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui,A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu,A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez and J.A. Pople, Gaussian 03, Revision D.01. Gaussian, Inc.: Pittsburgh, PA (2003).
G.L. Zhang, J. Ma and Y.S. Jiang, Macromolecules, 36, 2130 (2003).
G.R. Hutchison, Y.J. Zhao, B. Delley, A.J. Freeman, M.A. Ratner and T.J. Marks, Phys. Rev. B., 68, 035204 (2003).
S. Yang, P. Olishevski and M. Kertesz, Synth. Met., 141, 171 (2004).
J. Ma, S. Li and Y. Jiang, Macromolecules, 35, 1109 (2002).
H. Cao, J. Ma, G.L. Zhang and Y.S. Jiang, Macromolecules, 38, 1123 (2005).
M.E. Casida, C. Jamorski, K.C. Casida and K.R. Salahub, J. Chem. Phys., 108, 4439 (1998).
D.J. Tozer and N.C. Handy, J. Chem. Phys., 109, 10180 (1998).
J.L. Brédas, J.E. Norton, J.C. Cornil and V. Coropceanu, Accou. Chem. Res., 42, 1691 (2009).