Copyright (c) 2013 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Influence of Hydrothermal Synthesis Condition on Structure and Microwave Properties of Srn+1TinO3n+1 Ceramics
Corresponding Author(s) : Jiangying Wang
Asian Journal of Chemistry,
Vol. 25 No. 3 (2013): Vol 25 Issue 3
Abstract
Srn+1TinO3n+1 (n = 1, 2) ceramics were prepared by using hydrothermal synthesis derived powders and the influence of hydrothermal synthesis condition on microwave properties were investigated. The hydrothermally synthesized powders mainly form SrTiO3 and Sr(OH)2·mH2O. Grain size of the SrTiO3 decreases with increasing the concentration of KOH and reaction temperature, which lend itself to the formation of Srn+1TinO3n+1 during sintering. Srn+1TinO3n+1 ceramics prepared by using high concentration of KOH have lower permittivity and higher Q value, due to the formation of pure phase Srn+1TinO3n+1 and low porosity of ceramics.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Ruddlesden and P. Popper, Acta Crystallogr., 10, 538 (1957).
- S. Ruddlesden and P. Popper, Acta Crystallogr., 11, 54 (1958).
- J. Haeni, Appl. Phys. Lett., 78, 3292 (2001).
- P. Balaya, M. Ahrens, L. Kienle, J. Maier, B. Rahmati, S.B. Lee, W. Sigle, A. Pashkin, C. Kuntscher and M. Dressel, J. Am. Ceram. Soc., 89, 2804 (2006).
- Y. Hu, O. Tan, J. Pan, H. Huang and W. Cao, Sensor. Actuat. B: Chem., 108, 244 (2005).
- S. Burnside, J.E. Moser, K. Brooks, M. Grätzel and D. Cahen, J. Phys. Chem. B, 103, 9328 (1999).
- J. Li, S. Luo and M. Alim, Mater. Lett., 60, 720 (2006).
- J. Mateu, J.C. Booth and S.A. Schima, IEEE Trans. Microw. Theory Tech., 55, 391 (2007).
- P. Wise, I. Reaney, W. Lee, T. Price, D. Iddles and D. Cannell, J. Eur. Ceram. Soc., 21, 1723 (2001).
- E. Gutmann, A.A. Levin, M. Reibold, J. Muller, P. Paufler and D.C. Meyer, J. Solid State Chem., 179, 1864 (2006).
- T. Hungria, A.B. Hungria and A. Castro, J. Solid State Chem., 177, 1559 (2004).
- T. Hungria, I. MacLaren, H. Fuess, J. Galy and A. Castro, Mater. Lett., 62, 3095 (2008).
- Y. Liu, Y. Lu, M. Xu and L. Zhoun, J. Am. Ceram. Soc., 90, 1774 (2007).
- N. Zhou, G. Chen, H. Xian and H. Zhang, Mater. Res. Bull. 43 2554 (2008).
- B.W. Hakki and P.D. Coleman, IRE Trans. Microwave Theory Tech., 8, 402 (1960).
- S.K. Lee, G.J. Choi, U.Y. Hwang, K.K. Koo and T.J. Park, Mater. Lett., 57, 2201 (2003).
- X. Wang, H.L.W. Chan and C.L. Choy, J. Am. Ceram. Soc., 86, 1809 (2003).
References
S. Ruddlesden and P. Popper, Acta Crystallogr., 10, 538 (1957).
S. Ruddlesden and P. Popper, Acta Crystallogr., 11, 54 (1958).
J. Haeni, Appl. Phys. Lett., 78, 3292 (2001).
P. Balaya, M. Ahrens, L. Kienle, J. Maier, B. Rahmati, S.B. Lee, W. Sigle, A. Pashkin, C. Kuntscher and M. Dressel, J. Am. Ceram. Soc., 89, 2804 (2006).
Y. Hu, O. Tan, J. Pan, H. Huang and W. Cao, Sensor. Actuat. B: Chem., 108, 244 (2005).
S. Burnside, J.E. Moser, K. Brooks, M. Grätzel and D. Cahen, J. Phys. Chem. B, 103, 9328 (1999).
J. Li, S. Luo and M. Alim, Mater. Lett., 60, 720 (2006).
J. Mateu, J.C. Booth and S.A. Schima, IEEE Trans. Microw. Theory Tech., 55, 391 (2007).
P. Wise, I. Reaney, W. Lee, T. Price, D. Iddles and D. Cannell, J. Eur. Ceram. Soc., 21, 1723 (2001).
E. Gutmann, A.A. Levin, M. Reibold, J. Muller, P. Paufler and D.C. Meyer, J. Solid State Chem., 179, 1864 (2006).
T. Hungria, A.B. Hungria and A. Castro, J. Solid State Chem., 177, 1559 (2004).
T. Hungria, I. MacLaren, H. Fuess, J. Galy and A. Castro, Mater. Lett., 62, 3095 (2008).
Y. Liu, Y. Lu, M. Xu and L. Zhoun, J. Am. Ceram. Soc., 90, 1774 (2007).
N. Zhou, G. Chen, H. Xian and H. Zhang, Mater. Res. Bull. 43 2554 (2008).
B.W. Hakki and P.D. Coleman, IRE Trans. Microwave Theory Tech., 8, 402 (1960).
S.K. Lee, G.J. Choi, U.Y. Hwang, K.K. Koo and T.J. Park, Mater. Lett., 57, 2201 (2003).
X. Wang, H.L.W. Chan and C.L. Choy, J. Am. Ceram. Soc., 86, 1809 (2003).