Copyright (c) 2013 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Preparation of Polyhedral Oligosilsesquioxane-Based Organic-Inorganic Hybrid Porous Nanocomposite by Freeze-Drying Conditions
Corresponding Author(s) : Qiang Peng
Asian Journal of Chemistry,
Vol. 25 No. 3 (2013): Vol 25 Issue 3
Abstract
Novel organic-inorganic hybrid porous nanocomposites have been obtained by the reaction of octa(aminophenyl)silsesquioxane with formaldehyde under mild conditions by freeze-drying conditions. The structures of the products were characterized by FTIR spectroscopy, N2 adsorption isotherm and FESEM. The material showed a specific surface area of 340 m2/g and a pore volume of 0.83 cm3/g. The material has pore size 3.6-60 nm. The results of FTIR, solid-state 13C and 29Si NMR spectra clearly show that the cage structure of the polyhedral oligosilsesquioxane is retained during the synthesis and the polyhedral oligosilsesquioxane building blocks were successfully woven into the porous structure.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S.S. Han, H. Furukawa, O.M. Yaghi and W.A. Goddard, J. Am. Chem. Soc., 130, 11580 (2008).
- N.B. Mckeown and P.M. Budd, Chem. Soc. Rev., 35, 675 (2006).
- (a) Y. Wan, H. Wang, Q. Zhao, M. Klingstedt, O. Terasaki and D. Zhao, J. Am. Chem. Soc., 131, 4541 (2009); (b) M. Janssen, J. Wilting, C. Müller and D. Vogt, Angew. Chem. Int. Ed., 49, 7738 (2010).
- (a) L.J. Murray, M. Dinca and J.R. Long, Chem. Soc. Rev., 38, 1294 (2009); (b) J.R. Li, R.J. Kuppler and H.C. Zhou, Chem. Soc. Rev., 38, 1477 (2009); (c) L.F. Yang, S. Kinoshita, T. Yamada, S. Kanda, H. Kitagawa, M. Tokunaga, T. Ishimoto, T. Ogura, R. Nagumo, A. Miyamoto and M. Koyama, Angew. Chem. Int. Ed., 49, 5348 (2010).
- (a) J.A. Hurd, R. Vaidhyanathan, V. Thangadurai, C.I. Ratcliffe, I.L. Moudrakovski and G.K.H. Shimizu, Nat. Chem., 1, 705 (2009); (b) G.K.H. Shimizu, R. Vaidhyanathan and J.M. Taylor, Chem. Soc. Rev., 38, 1430 (2009); (c) A. Shigematsu, T. Yamada and H. Kitagawa, J. Am. Chem. Soc., 133, 2034 (2011).
- (a) J. Schmidt, J. Weber, J.D. Epping, M. Antonietti and A. Thomas, Adv. Mater., 21, 702 (2009); (b) G. Soler-Illia, C. Sanchez, B. Lebeau and J. Patarin, Chem. Rev., 102, 4093 (2002); (c) C.R. Becker, S. Apperson, C.J. Morris, S. Gangopadhyay, L.J. Currano, W.A. Churaman and C.R. Stoldt, Nano Lett., 11, 803 (2011).
- Z. Yang, Y. Lu and Z. Yang, Chem. Commun., 2270 (2009).
- C. Sanchez, B. Julián, P. Belleville and M. Popall, J. Mater, Chem., 15, 3559 (2005).
- F. Hoffmann, M. Cornelius, J. Morell and M. Fröba, Angew. Chem. Int. Ed., 45, 3216 (2006).
- D.B. Cordes, P.D. Lickiss and F. Rataboul,Chem. Rev., 110, 2081 (2010).
- T.S. Haddad and J.D. Lichtenhan, Macromolecules, 29, 7302 (1996).
- (a) F. Wang, X. Lu and C. He, J. Mater. Chem., 21, 2775 (2011); (b) Q. Zhang, H. He, K. Xi, X. Huang, X. Yu and X. Jia, Macromolecules, 44, 550 (2011); (c) B.H. Tan, H. Hussain and C.B. He, Macromolecules, 44, 622 (2011).
- (a) C. Zhang, F. Babonneau, C. Bonhomme, R.M. Laine, C.L. Soles, H.A. Hristov and A.F. Yee, J. Am. Chem. Soc., 120, 8380 (1998); (b) P.G. Harrison and R. Kannengisser, Chem. Commun., 415 (1996); (c) J.J. Morrison, C.J. Love, B.W. Manson, I.J. Shannon and R.E. Morris, J. Mater. Chem., 12, 3208 (2002); (d) L. Zhang, H.C.L. Abbenhuis, Q. Yang, Y. Wang, P.C.M.M. Magusin, B. Mezari, R.A. van Santen and C. Li, Angew. Chem. Int. Ed., 46, 5003 (2007); (e) L. Zhang, Q. Yang, H. Yang, J. Liu, H. Xin, B. Mezari, P.C.M.M. Magusin, H.C.L. Abbenhuis, R.A. van Santen and C. Li, J. Mater. Chem., 18, 450 (2008); (f) R. Goto, A. Shimojima, H. Kuge and K. Kuroda, Chem. Commun., 6152 (2008); (g) Y. Hagiwara, A. Shimojima and K. Kuroda, Chem. Mater., 20, 1147 (2008).
- R. Tamaki, Y. Tanaka, M.Z. Asuncion, J. Choi and R.M. Laine, J. Am. Chem. Soc., 123, 12416 (2001).
- (a) R. Tamaki; J. Choi and R.M. Laine, Chem. Mater., 15, 793 (2003); (b) J. Choi, R. Tamaki, S.G. Kim and R.M. Laine, Chem. Mater., 15, 3365 (2003).
- Y.D. Tretyakov, N.N. Oleynikov and O.A. Shlyahtin, Cryochemical Synthesis of Advanced Materials, Chapman & Hall, London, p. 323 (1997).
- D. Segal, Chemical Synthesis of Advanced Ceramic Materials, Cambridge University Press (1991).
- (a) D. Klvana, J. Chaouki, L. Perras and C. Belanger, In eds.: K.J. Smith and E.C. Sanford, Powder Catalyst for a Newhydrogenation Process for Aromatic Hydrocarbons, In Progress in Catalysis, Elsevier Science Publishers B.V. (1992); (b) S.V. Kalinin, Cryosol Synthesis on Nanocomposite Materials, M.Sc. Thesis, Moscow State University, Moscow (1998).
- S.V. Kalinin, L.I. Kheifets, A.I. Mamchik, A.G. Knot'ko and A.A. Vertegel, J. Sol-Gel Sci. Technol., 15, 31 (1999).
- E.P. Barrett, L.G. Joyner and P.P. Halenda, J. Am. Chem. Soc., 73, 373 (1951).
- J. Brus and M. Urbanová, Macromolecules, 41, 372 (2008).
- J. Han and S. Zheng, Macromolecules, 41, 4561 (2008).
References
S.S. Han, H. Furukawa, O.M. Yaghi and W.A. Goddard, J. Am. Chem. Soc., 130, 11580 (2008).
N.B. Mckeown and P.M. Budd, Chem. Soc. Rev., 35, 675 (2006).
(a) Y. Wan, H. Wang, Q. Zhao, M. Klingstedt, O. Terasaki and D. Zhao, J. Am. Chem. Soc., 131, 4541 (2009); (b) M. Janssen, J. Wilting, C. Müller and D. Vogt, Angew. Chem. Int. Ed., 49, 7738 (2010).
(a) L.J. Murray, M. Dinca and J.R. Long, Chem. Soc. Rev., 38, 1294 (2009); (b) J.R. Li, R.J. Kuppler and H.C. Zhou, Chem. Soc. Rev., 38, 1477 (2009); (c) L.F. Yang, S. Kinoshita, T. Yamada, S. Kanda, H. Kitagawa, M. Tokunaga, T. Ishimoto, T. Ogura, R. Nagumo, A. Miyamoto and M. Koyama, Angew. Chem. Int. Ed., 49, 5348 (2010).
(a) J.A. Hurd, R. Vaidhyanathan, V. Thangadurai, C.I. Ratcliffe, I.L. Moudrakovski and G.K.H. Shimizu, Nat. Chem., 1, 705 (2009); (b) G.K.H. Shimizu, R. Vaidhyanathan and J.M. Taylor, Chem. Soc. Rev., 38, 1430 (2009); (c) A. Shigematsu, T. Yamada and H. Kitagawa, J. Am. Chem. Soc., 133, 2034 (2011).
(a) J. Schmidt, J. Weber, J.D. Epping, M. Antonietti and A. Thomas, Adv. Mater., 21, 702 (2009); (b) G. Soler-Illia, C. Sanchez, B. Lebeau and J. Patarin, Chem. Rev., 102, 4093 (2002); (c) C.R. Becker, S. Apperson, C.J. Morris, S. Gangopadhyay, L.J. Currano, W.A. Churaman and C.R. Stoldt, Nano Lett., 11, 803 (2011).
Z. Yang, Y. Lu and Z. Yang, Chem. Commun., 2270 (2009).
C. Sanchez, B. Julián, P. Belleville and M. Popall, J. Mater, Chem., 15, 3559 (2005).
F. Hoffmann, M. Cornelius, J. Morell and M. Fröba, Angew. Chem. Int. Ed., 45, 3216 (2006).
D.B. Cordes, P.D. Lickiss and F. Rataboul,Chem. Rev., 110, 2081 (2010).
T.S. Haddad and J.D. Lichtenhan, Macromolecules, 29, 7302 (1996).
(a) F. Wang, X. Lu and C. He, J. Mater. Chem., 21, 2775 (2011); (b) Q. Zhang, H. He, K. Xi, X. Huang, X. Yu and X. Jia, Macromolecules, 44, 550 (2011); (c) B.H. Tan, H. Hussain and C.B. He, Macromolecules, 44, 622 (2011).
(a) C. Zhang, F. Babonneau, C. Bonhomme, R.M. Laine, C.L. Soles, H.A. Hristov and A.F. Yee, J. Am. Chem. Soc., 120, 8380 (1998); (b) P.G. Harrison and R. Kannengisser, Chem. Commun., 415 (1996); (c) J.J. Morrison, C.J. Love, B.W. Manson, I.J. Shannon and R.E. Morris, J. Mater. Chem., 12, 3208 (2002); (d) L. Zhang, H.C.L. Abbenhuis, Q. Yang, Y. Wang, P.C.M.M. Magusin, B. Mezari, R.A. van Santen and C. Li, Angew. Chem. Int. Ed., 46, 5003 (2007); (e) L. Zhang, Q. Yang, H. Yang, J. Liu, H. Xin, B. Mezari, P.C.M.M. Magusin, H.C.L. Abbenhuis, R.A. van Santen and C. Li, J. Mater. Chem., 18, 450 (2008); (f) R. Goto, A. Shimojima, H. Kuge and K. Kuroda, Chem. Commun., 6152 (2008); (g) Y. Hagiwara, A. Shimojima and K. Kuroda, Chem. Mater., 20, 1147 (2008).
R. Tamaki, Y. Tanaka, M.Z. Asuncion, J. Choi and R.M. Laine, J. Am. Chem. Soc., 123, 12416 (2001).
(a) R. Tamaki; J. Choi and R.M. Laine, Chem. Mater., 15, 793 (2003); (b) J. Choi, R. Tamaki, S.G. Kim and R.M. Laine, Chem. Mater., 15, 3365 (2003).
Y.D. Tretyakov, N.N. Oleynikov and O.A. Shlyahtin, Cryochemical Synthesis of Advanced Materials, Chapman & Hall, London, p. 323 (1997).
D. Segal, Chemical Synthesis of Advanced Ceramic Materials, Cambridge University Press (1991).
(a) D. Klvana, J. Chaouki, L. Perras and C. Belanger, In eds.: K.J. Smith and E.C. Sanford, Powder Catalyst for a Newhydrogenation Process for Aromatic Hydrocarbons, In Progress in Catalysis, Elsevier Science Publishers B.V. (1992); (b) S.V. Kalinin, Cryosol Synthesis on Nanocomposite Materials, M.Sc. Thesis, Moscow State University, Moscow (1998).
S.V. Kalinin, L.I. Kheifets, A.I. Mamchik, A.G. Knot'ko and A.A. Vertegel, J. Sol-Gel Sci. Technol., 15, 31 (1999).
E.P. Barrett, L.G. Joyner and P.P. Halenda, J. Am. Chem. Soc., 73, 373 (1951).
J. Brus and M. Urbanová, Macromolecules, 41, 372 (2008).
J. Han and S. Zheng, Macromolecules, 41, 4561 (2008).