Copyright (c) 2013 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Microwave-Assisted Rapid Synthesis of Magnetite Fe3O4 Nanoparticles
Corresponding Author(s) : Chonghai Deng
Asian Journal of Chemistry,
Vol. 25 No. 10 (2013): Vol 25 Issue 10
Abstract
Using FeSO4(NH4)2SO4·6H2O and triethanolamine as iron and alkali sources, magnetite Fe3O4 nanoparticles are synthesized through a microwave-assisted chemical route. The as-prepared products are characterized by X-ray diffraction, field-emission scanning electron microscopy and transmission electron microscopy. The sizes of Fe3O4 nanoparticles ranging from 5 to 20 nm are obtained. The magnetic property of the obtained Fe3O4 nanoparticles is studied by vibrating sample magnetometer. Magnetic analysis reveals that the Fe3O4 nanoparticles are ferromagnetic with a saturation magnetization of 25.5 emu·g-1. The growth mechanism of Fe3O4 nanoparticles is also simply discussed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Z.M. Cui, L.Y. Jiang, W.G. Song and Y.G. Guo, Chem. Mater., 21, 1162 (2009).
- H. Tan, J.M. Xue, B. Shuter, X. Li and J. Wang, Adv. Funct. Mater., 20, 722 (2010).
- Z. Gu, S.X. Huang and Y. Chen, Angew. Chem. Int. Ed., 48, 952 (2009).
- T. Hyeon, Chem. Commun., 8, 927 (2003).
- Z.P. Cheng, X.Z. Chu, J.Z. Yin, H. Zhong and J.M. Xu, Mater. Lett., 75, 172 (2012).
- X.Z. Wang, Z.B. Zhao, J.Y. Qu, Z.Y. Wang and J.S. Qiu, Cryst. Growth Des., 10, 2863 (2010).
- S. Wu, A.Z. Sun, F.Q. Zhai, J. Wang, W.H. Xu, Q. Zhang and A.A. Volinsky, Mater. Lett., 65, 1882 (2011).
- F. Miao, W. Hua, L. Hu and K.M. Huang, Mater. Lett., 65, 1031 (2011).
- W. Zhang, S.Y. Jia, Q. Wu, J.Y. Ran, S.H. Wu and Y. Liu, Mater. Lett., 65, 1973 (2011).
- X.A. Li, B. Zhang, C.H. Ju, X.J. Han, Y.C. Du and P. Xu, J. Phys. Chem. C, 115, 12350 (2011).
- D.H. Han, J.P. Wang and H.L. Luo, J. Magn. Magn. Mater., 136, 176 (1994).
- R. Ramesh, M. Rajalakshmi, C. Muthamizhchelvan and S. Ponnusamy, Mater. Lett., 70, 73 (2012).
- G.H. Gao, X.H. Liu, R.R. Shi, K.C. Zhou, Y.G. Shi, R.Z. Ma, E.J. TakayamaMuromachi and G.Z. Qiu, Cryst. Growth Des., 10, 2888 (2010).
References
Z.M. Cui, L.Y. Jiang, W.G. Song and Y.G. Guo, Chem. Mater., 21, 1162 (2009).
H. Tan, J.M. Xue, B. Shuter, X. Li and J. Wang, Adv. Funct. Mater., 20, 722 (2010).
Z. Gu, S.X. Huang and Y. Chen, Angew. Chem. Int. Ed., 48, 952 (2009).
T. Hyeon, Chem. Commun., 8, 927 (2003).
Z.P. Cheng, X.Z. Chu, J.Z. Yin, H. Zhong and J.M. Xu, Mater. Lett., 75, 172 (2012).
X.Z. Wang, Z.B. Zhao, J.Y. Qu, Z.Y. Wang and J.S. Qiu, Cryst. Growth Des., 10, 2863 (2010).
S. Wu, A.Z. Sun, F.Q. Zhai, J. Wang, W.H. Xu, Q. Zhang and A.A. Volinsky, Mater. Lett., 65, 1882 (2011).
F. Miao, W. Hua, L. Hu and K.M. Huang, Mater. Lett., 65, 1031 (2011).
W. Zhang, S.Y. Jia, Q. Wu, J.Y. Ran, S.H. Wu and Y. Liu, Mater. Lett., 65, 1973 (2011).
X.A. Li, B. Zhang, C.H. Ju, X.J. Han, Y.C. Du and P. Xu, J. Phys. Chem. C, 115, 12350 (2011).
D.H. Han, J.P. Wang and H.L. Luo, J. Magn. Magn. Mater., 136, 176 (1994).
R. Ramesh, M. Rajalakshmi, C. Muthamizhchelvan and S. Ponnusamy, Mater. Lett., 70, 73 (2012).
G.H. Gao, X.H. Liu, R.R. Shi, K.C. Zhou, Y.G. Shi, R.Z. Ma, E.J. TakayamaMuromachi and G.Z. Qiu, Cryst. Growth Des., 10, 2888 (2010).