Copyright (c) 2013 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Controllable Morphology and Structure of MoO3 Hexagonal Poles and Nanobelts
Corresponding Author(s) : Qingchun Zhao
Asian Journal of Chemistry,
Vol. 25 No. 10 (2013): Vol 25 Issue 10
Abstract
Various morphology and structure of MoO3 were prepared via hydrothermal reaction method. The experimental results show that Na+ and H+ play a decisive role in the formation of h-MoO3 and a-MoO3. As mol ratio of Na2MoO4 : H2SO4 = 1 : 2 and 1, a-MoO3 nanobelts and h-MoO3 hexagonal poles were obtained, respectively. Scanning electron microscopy and transmission electron microscopy images of the products clearly show that MoO3 possesses a nanobelt and hexagonal pole structure. Electron diffraction patterns of MoO3 nanobelt and hexagonal pole, Raman spectra and X-ray diffraction analysis were used to examine the crystal structure of the obtained products. The obtained nanobelts are pure-phase orthorhombic a-MoO3 nanobelts and hexagonal poles are pure-phase metastable phase of hexagonal h-MoO3.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C.B. Murray and D.J. Norris, J. Am. Chem. Soc., 115, 8706 (1993).
- J.T. Hu, T.W. Odom and C.M. Lieber, Acc. Chem. Res., 32, 435 (1999).
- K. Chung, C. Lee and G. Yi, Science, 29, 655 (2010).
- X.Y. Kong, Y. Ding, R. Yang and Z.L. Wang, Science, 27, 1348 (2004).
- Y. Wu and P. Yang, J. Am. Chem. Soc., 123, 3165 (2001).
- Z.A. Peng and X. Peng, J. Am. Chem. Soc., 124, 3343 (2002).
- C.J. Murphy and N.R. Jana, Adv. Mater., 14, 80 (2002).
- G. Patzke and R.F. Krumeich, Angew. Chem. Int. Ed., 41, 2446 (2002).
- X.F. Duan, Y. Huang, J.F. Wang and C.M. Lieber, Nature, 409, 66 (2001).
- Z.W. Pan and Z.Z.L. Wang, Science, 9, 1947 (2001).
- P.X. Gao, Y. Ding, W.J. Mai, W.L. Hughes, C. Lao and Z.L. Wang, Science, 9, 1700 (2005).
- W. Pan, R. Tian, H. Jin, Y. Guo and L. Zhang, Chem. Mater., 22, 6202 (2010).
- N. Al-Yassir and V. Le, Appl. Catal. A, 305, 130 (2006).
- J.N. Yao, K. Hashimoto and A. Fujishima, Nature, 355, 624 (1992).
- Y.A. Yang, Y.W. Cao, B.H. Loo and J.N. Yao, J. Phys. Chem. B, 102, 9392 (1998).
- D. Manno, M.D. Giulio and A. Serra, J. Phys. D, 35, 228 (2002).
- J.F. Colin, V. Prolong, M. Hervieu, V. Caignaert and B. Raveau, Chem. Mater., 20, 1534 (2008).
- X. Sha, L. Chen, C.C. Alan, P.P. Guido and H. Cheng, J. Phys. Chem. C, 113, 11399 (2009).
- R.P. Greta, M. Alexej, K. Frank, N. Reinhard, J. Grunwaldt and A. Baiker, Chem. Mater., 16, 1126 (2004).
- S. Hu and X. Wang, J. Am. Chem. Soc., 130, 8126 (2008).
- L. Zheng, Y. Xu, D. Jin and Y. Xie, Chem. Mater., 21, 5681 (2009).
- X. Chen, W. Lei, D. Liu, J. Hao, Q. Cui and G. Zou, J. Phys. Chem. C, 113, 21582 (2009).
- T. Liu, Y. Xie and B.Chu, Langmuir, 16, 9015 (2000).
- L. Cai, P.M. Rao and X. Zheng, Nano Lett., 11, 872 (2011).
- D.M. Antonelli and M. Trudeau, Angew. Chem. Int. Ed.. 38, 1471 (1999).
- G. Mestl, P. Ruiz, B. Delmon and H. Knozinger, J. Phys. Chem., 98, 11269 (1994).
References
C.B. Murray and D.J. Norris, J. Am. Chem. Soc., 115, 8706 (1993).
J.T. Hu, T.W. Odom and C.M. Lieber, Acc. Chem. Res., 32, 435 (1999).
K. Chung, C. Lee and G. Yi, Science, 29, 655 (2010).
X.Y. Kong, Y. Ding, R. Yang and Z.L. Wang, Science, 27, 1348 (2004).
Y. Wu and P. Yang, J. Am. Chem. Soc., 123, 3165 (2001).
Z.A. Peng and X. Peng, J. Am. Chem. Soc., 124, 3343 (2002).
C.J. Murphy and N.R. Jana, Adv. Mater., 14, 80 (2002).
G. Patzke and R.F. Krumeich, Angew. Chem. Int. Ed., 41, 2446 (2002).
X.F. Duan, Y. Huang, J.F. Wang and C.M. Lieber, Nature, 409, 66 (2001).
Z.W. Pan and Z.Z.L. Wang, Science, 9, 1947 (2001).
P.X. Gao, Y. Ding, W.J. Mai, W.L. Hughes, C. Lao and Z.L. Wang, Science, 9, 1700 (2005).
W. Pan, R. Tian, H. Jin, Y. Guo and L. Zhang, Chem. Mater., 22, 6202 (2010).
N. Al-Yassir and V. Le, Appl. Catal. A, 305, 130 (2006).
J.N. Yao, K. Hashimoto and A. Fujishima, Nature, 355, 624 (1992).
Y.A. Yang, Y.W. Cao, B.H. Loo and J.N. Yao, J. Phys. Chem. B, 102, 9392 (1998).
D. Manno, M.D. Giulio and A. Serra, J. Phys. D, 35, 228 (2002).
J.F. Colin, V. Prolong, M. Hervieu, V. Caignaert and B. Raveau, Chem. Mater., 20, 1534 (2008).
X. Sha, L. Chen, C.C. Alan, P.P. Guido and H. Cheng, J. Phys. Chem. C, 113, 11399 (2009).
R.P. Greta, M. Alexej, K. Frank, N. Reinhard, J. Grunwaldt and A. Baiker, Chem. Mater., 16, 1126 (2004).
S. Hu and X. Wang, J. Am. Chem. Soc., 130, 8126 (2008).
L. Zheng, Y. Xu, D. Jin and Y. Xie, Chem. Mater., 21, 5681 (2009).
X. Chen, W. Lei, D. Liu, J. Hao, Q. Cui and G. Zou, J. Phys. Chem. C, 113, 21582 (2009).
T. Liu, Y. Xie and B.Chu, Langmuir, 16, 9015 (2000).
L. Cai, P.M. Rao and X. Zheng, Nano Lett., 11, 872 (2011).
D.M. Antonelli and M. Trudeau, Angew. Chem. Int. Ed.. 38, 1471 (1999).
G. Mestl, P. Ruiz, B. Delmon and H. Knozinger, J. Phys. Chem., 98, 11269 (1994).