Copyright (c) 2013 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Study of SWCNTs-Supported Pd and Pt Catalyst by K Filled
Corresponding Author(s) : You-Ming Cao
Asian Journal of Chemistry,
Vol. 25 No. 10 (2013): Vol 25 Issue 10
Abstract
In order to improve reducing property of single-walled carbon nanotubes, potassium was filled in interior of carbon nanotubes on vacuum condition. Single-walled carbon nanotubes-supported Pt and Pd catalyst was obtained when potassium filled single-walled carbon nanotubes was put in K2PtCl6 and PdCl2 solution. The as-grown products were characterized using transmission electron microscopy, X-ray photoelectron spectroscopy techniques and mechanism of potassium filled single-walled carbon nanotubes supporting metal was researched. The results showed that potassium filled single-walled carbon nanotubes is better than the single-walled carbon nanotubes in terms of the reducing property, capacity and particle size (particles with diameters of 1 nm) of supporting metal. Potassium filled single-walled carbon nanotubes-supported Pt and Pd has good performance on distribute, tight and purity. From the research of electron transfer, electron move from potassium to the surface of single-walled carbon nanotubes. Subsequently, metal ion obtained electron was deposited on the surface of single-walled carbon nanotubes. Solution reached neutral between potassium ion and anion.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Sloan, J. Hammer, M. Zwiefka-Sibley and M.L.H. Green, Chem. Commun., 347 (1998).
- H. Kawasaki, M. Toyoda, H. Shinohara, J. Okuda, I. Watanabe, T. Yamamoto, K. Tanaka, T. Tenjo and N. Tanigawa, Cancer, 91, 2026 (2001).
- S.K. Dong, L. Takhee and E.G. Kurt, Angew. Chem. Int. Ed., 45, 104 (2006).
- H.C. Choi, M. Shim, S. Bangsaruntip and H.J. Dai, J. Am. Chem. Soc., 124, 9058 (2002).
- M.J. O'Connell, S.M. Bachilo, C.B. Huffman, V.C. Moore, M.S. Strano, E.H. Haroz, K.L. Rialon, P.J. Boul, W.H. Noon, C. Kittrell, J.P. Ma, R.H. Hauge, R.B. Weisman, R.E. Smalley, Science, 297, 593 (2002).
- V. Lordi, N. Yao and J. Wei, Chem. Mater., 13, 733 (2001).
- L. Xing, F. Du, J.J. Liang, Y.S. Chen and Q.L. Zhou, J. Mol. Catal. A, 276, 191 (2007).
- H.J. Li, L. Feng, L.H. Guan, Z.J. Shi and Z.N. Gu, Solid State Commun., 132, 219 (2004).
- Z.J. Shi, Y.F. Lian, F.H. Liao, X.H. Zhou, Z.N. Gu, Y.G. Zhang and S. Iijima, Solid State Commun., 112, 35 (1999).
- A.S. Aricò, A.K. Shukla, H. Kim, S. Park, M. Min and V. Antonucci, Appl. Surf. Sci., 172, 33 (2001).
References
J. Sloan, J. Hammer, M. Zwiefka-Sibley and M.L.H. Green, Chem. Commun., 347 (1998).
H. Kawasaki, M. Toyoda, H. Shinohara, J. Okuda, I. Watanabe, T. Yamamoto, K. Tanaka, T. Tenjo and N. Tanigawa, Cancer, 91, 2026 (2001).
S.K. Dong, L. Takhee and E.G. Kurt, Angew. Chem. Int. Ed., 45, 104 (2006).
H.C. Choi, M. Shim, S. Bangsaruntip and H.J. Dai, J. Am. Chem. Soc., 124, 9058 (2002).
M.J. O'Connell, S.M. Bachilo, C.B. Huffman, V.C. Moore, M.S. Strano, E.H. Haroz, K.L. Rialon, P.J. Boul, W.H. Noon, C. Kittrell, J.P. Ma, R.H. Hauge, R.B. Weisman, R.E. Smalley, Science, 297, 593 (2002).
V. Lordi, N. Yao and J. Wei, Chem. Mater., 13, 733 (2001).
L. Xing, F. Du, J.J. Liang, Y.S. Chen and Q.L. Zhou, J. Mol. Catal. A, 276, 191 (2007).
H.J. Li, L. Feng, L.H. Guan, Z.J. Shi and Z.N. Gu, Solid State Commun., 132, 219 (2004).
Z.J. Shi, Y.F. Lian, F.H. Liao, X.H. Zhou, Z.N. Gu, Y.G. Zhang and S. Iijima, Solid State Commun., 112, 35 (1999).
A.S. Aricò, A.K. Shukla, H. Kim, S. Park, M. Min and V. Antonucci, Appl. Surf. Sci., 172, 33 (2001).