Copyright (c) 2013 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Phosphorus Removal from Eutrophic Waters with a Novel Lanthanum-Modified Diatomite
Corresponding Author(s) : Fazhi Xie
Asian Journal of Chemistry,
Vol. 25 No. 10 (2013): Vol 25 Issue 10
Abstract
A novel phosphorus adsorbent, lanthanum-modified diatomite was prepared by a simple coating method and exhibited high adsorption and removal efficiency for phosphorus in aqueous solutions. After being modified by lanthanum hydroxide, the surface area of diatomite increased 85-fold and the pore volume increased 390 times. These characteristics are responsible for the increased phosphorus adsorption efficiency. Adsorption behaviour for phosphorus depended mainly on the pH of solution, contact time, initial P concentration and co-exist anion ions. The as-prepared sorbent can be used to remove phosphorus from eutrophic lake water efficiently.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D.J. Conley, H.W. Paerl, R.W. Howarth, D.F. Boesch, S.P. Seitzinger, K.E. Havens, C. Lancelot and G.E. Likens, Science, 323, 1014 (2009).
- D.W. Schindler, Science, 195, 260 (1977).
- X. Jin, Q. Xu and C. Huang, Sci. China Ser. C: Life Sci., 48, 948 (2005).
- T.D. French and E.L. Petticrew, Hydrobiologia, 575, 285 (2007).
- Q. Zhou, C.E. Gibson and Y. Zhu, Chemosphere, 42, 221 (2001).
- W. Xiong and J. Peng, Water Res., 42, 4869 (2008).
- J.A. Rentz, I.P. Turner and J.L. Ullman, Water Res., 43, 2029 (2009).
- S.K. Kang, K.H. Choo and K.H. Lim, Sep. Sci. Technol., 38, 3853 (2003).
- D.R. Kioussis, F.W. Wheaton and P. Kofinas, Aquacult. Eng., 23, 315 (2000).
- S. Nagamine, T. Ueda, I. Masuda, T. Mori, E. Sasaoka and I. Joko, Ind. Eng. Chem. Res., 42, 4748 (2003).
- C. Barca, C. Gerente, D. Meyer, F. Chazarenc and Y. Andres, Water Res., 46, 2376 (2012).
- J. Zhang, Z. Shen, Z. Mei, S. Li and W. Wang, J. Environ. Sci., 23, 199 (2011).
- K.H. Goh, T.T. Lim and Z. Dong, Water Res., 42, 1343 (2008).
- G. Zhang, H. Liu, R. Liu and J. Qu, J. Colloid Interf. Sci., 335, 168 (2009).
- F. Haghseresht, S. Wang and D.D. Do, Appl. Clay Sci., 46, 369 (2009).
- R.S.S. Wu, K.H. Lam, J.M.N. Lee and T.C. Lau, Chemosphere, 69, 289 (2007).
- B.K. Biswas, K. Inoue, K.N. Ghimire, S. Ohta, H. Harada, K. Ohto and H. Kawakita, J. Colloid Interf. Sci., 312, 214 (2007).
References
D.J. Conley, H.W. Paerl, R.W. Howarth, D.F. Boesch, S.P. Seitzinger, K.E. Havens, C. Lancelot and G.E. Likens, Science, 323, 1014 (2009).
D.W. Schindler, Science, 195, 260 (1977).
X. Jin, Q. Xu and C. Huang, Sci. China Ser. C: Life Sci., 48, 948 (2005).
T.D. French and E.L. Petticrew, Hydrobiologia, 575, 285 (2007).
Q. Zhou, C.E. Gibson and Y. Zhu, Chemosphere, 42, 221 (2001).
W. Xiong and J. Peng, Water Res., 42, 4869 (2008).
J.A. Rentz, I.P. Turner and J.L. Ullman, Water Res., 43, 2029 (2009).
S.K. Kang, K.H. Choo and K.H. Lim, Sep. Sci. Technol., 38, 3853 (2003).
D.R. Kioussis, F.W. Wheaton and P. Kofinas, Aquacult. Eng., 23, 315 (2000).
S. Nagamine, T. Ueda, I. Masuda, T. Mori, E. Sasaoka and I. Joko, Ind. Eng. Chem. Res., 42, 4748 (2003).
C. Barca, C. Gerente, D. Meyer, F. Chazarenc and Y. Andres, Water Res., 46, 2376 (2012).
J. Zhang, Z. Shen, Z. Mei, S. Li and W. Wang, J. Environ. Sci., 23, 199 (2011).
K.H. Goh, T.T. Lim and Z. Dong, Water Res., 42, 1343 (2008).
G. Zhang, H. Liu, R. Liu and J. Qu, J. Colloid Interf. Sci., 335, 168 (2009).
F. Haghseresht, S. Wang and D.D. Do, Appl. Clay Sci., 46, 369 (2009).
R.S.S. Wu, K.H. Lam, J.M.N. Lee and T.C. Lau, Chemosphere, 69, 289 (2007).
B.K. Biswas, K. Inoue, K.N. Ghimire, S. Ohta, H. Harada, K. Ohto and H. Kawakita, J. Colloid Interf. Sci., 312, 214 (2007).