Copyright (c) 2017 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Hydrolysis of Canola Oil Under Subcritical Conditions for Biodiesel Synthesis
Corresponding Author(s) : C. Silva
Asian Journal of Chemistry,
Vol. 29 No. 2 (2017): Vol 29 Issue 2
Abstract
This study presents the synthesis of canola hydrolyzate for the production of biodiesel using subcritical water. The reactions were conducted in continuous mode evaluating the effects of temperature, pressure and the oil to water mass ratio at different residence times. A pressure increase from 10 to 15 MPa, favoured the production of higher levels of free fatty acids. The free fatty acid formation was directly proportional to the temperature increase in the experimental range evaluated and high yields were obtained at low residence times. The use of larger amounts of water in the reaction mixture provided the greatest formation of free fatty acids; however, the use of oil to water mass ratios above 1:2 had no significant effects (p > 0.05) on the free fatty acids content, possibly because the reaction reached equilibrium conditions. Free fatty acids yields of about 90 % for an oil to water mass ratio of 1:2, 15 MPa, 305 °C and 9.5 min of reaction are reported.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- N. Dizge and B. Keskinler, Biomass Bioenergy, 32, 1274 (2008).
- A.C. Sanches, E.P. Gomes, W.B. Ramos, M. Mauad, S. Santos and G.A. Biscaro, Rev. Bras. Eng. Agric. Ambient., 18, 688 (2014).
- L. Lin, H. Allemekinders, A. Dansby, L. Campbell, S. Durance-Tod, A. Berger and P.J.H. Jones, Nutr. Rev., 71, 370 (2013).
- United States Department of Agriculture Economic Research Service, http://www.ers.usda.gov/topics/crops/soybeans-oil-crops/canola.aspx.
- M.K. Sung, M.H. Kim, H.J. Seo and J.I. Chung, Plant Breed. Biotechnol.,1, 9 (2013).
- S.B. Lee, K.H. Han, J.D. Lee and I.K. Hong, J. Ind. Eng. Chem., 16, 1006 (2010).
- L. Zou and S. Atkinson, Environ. Technol., 24, 1253 (2003).
- I.H. Hong, J.R. Lee and S.B. Lee, J. Ind. Eng. Chem., 22, 335 (2015).
- E. Öztürk, Fuel Process. Technol., 129, 183 (2015).
- S.K. Hoekman, A. Broch, C. Robbins, E. Ceniceros and M. Natarajan, Renew. Sustain. Energy Rev., 16, 143 (2012).
- J.S. de Sousa, E.A. Cavalcanti-Oliveira, D.A.G. Aranda and D.M.G. Freire, J. Mol. Catal. B, 65, 133 (2010).
- D. Soares, A.F. Pinto, A.G. Gonçalves, D.A. Mitchell and N. Krieger, Biochem. Eng. J., 81, 15 (2013).
- H.F. Castro, A.A. Mendes, J.C. Santos and C.L. Aguiar, Quim. Nova, 27, 146 (2004).
- S. Hama and A. Kondo, Bioresour. Technol., 135, 386 (2013).
- R. Alenezi, G.A. Leeke, R.C.D. Santos and A.R. Khan, Chem. Eng. Res. Des., 87, 867 (2009).
- R. Alenezi, M. Baig, J. Wang, R. Santos and G.A. Leeke, Energy Sources, 32, 460 (2010).
- F.J. Eller, J.A. Teel and D.E. Palmquist, J. Am. Oil Chem. Soc., 88, 1455 (2011).
- T. Kocsisová, J. Juhasz and J. Cvengros, Eur. J. Lipid Sci. Technol., 108, 652 (2006).
- J.S.S. Pinto and F.M. Lanças, Quim. Nova, 33, 394 (2010).
- M. Ravber, Z. Knez and M. Skerget, J. Supercrit. Fluids, 104, 145 (2015).
- R.E. Walker, Official Methods and Recommended Practices of the American Oil Chemists' Society (Method AOCS Ca 5a-40), Champaign: United States (1998).
- Aceites y Grasas 46, Tomo XII, No. 1, pp. 84-92 (2002).
- L.V. Cocks and C. van Rede, Laboratory Handbook for Oils and Fats Analysis, Academic Press: London (1996).
- J.K. Satyarthi, D. Srinivas and P. Ratnasamy, Appl. Catal. A, 391, 427 (2011).
- P. Khuwijitjaru, T. Fujii, S. Adachi, Y. Kimura and R. Matsuno, Chem. Eng. J., 99, 1 (2004).
- M.N. Baig, R.C.D. Santos, J. King, D. Pioch and S. Bowra, Chem. Eng. Res. Des., 91, 2663 (2013).
- H.Y. Shin, J.H. Ryu, S.Y. Park and S.Y. Bae, J. Anal. Appl. Pyrolysis, 98, 250 (2012).
- E. Minami and S. Saka, Fuel, 85, 2479 (2006).
- A.L. Milliren, J.C. Wissinger, V. Gottumukala and C.A. Schall, Fuel, 108, 277 (2013).
- J.H. Ryu, S.Y. Park, S.Y. Bae and H.Y. Shin, J. Chem. Eng. Japan, 47, 399 (2014).
- D. Kusdiana and S. Saka, Appl. Biochem. Biotechnol., 115, 781 (2004).
- Z. Ilham and S. Saka, Bioresour. Technol., 101, 2735 (2010).
- R.D. Micic, M.D. Tomic, F.E. Kiss, E.B. Nikoliæ-Djoric and M.D. Simikic, J. Supercrit. Fluids, 103, 90 (2015).
- P. Huang, R.F. Yang, T.Q. Qiu and X.D. Fan, J. Supercrit. Fluids, 81, 221 (2013).
- L.P. Toralles, C.T. Alves, E.A. Torres, H.M.C. Andrade, F.L.P. Pessoa and S.A.B.V. de Melo, Chem. Eng. Transc., 43, 565 (2015).
- J.W. King, R.L. Holliday and G.R. List, Green Chem., 1, 261 (1999)
References
N. Dizge and B. Keskinler, Biomass Bioenergy, 32, 1274 (2008).
A.C. Sanches, E.P. Gomes, W.B. Ramos, M. Mauad, S. Santos and G.A. Biscaro, Rev. Bras. Eng. Agric. Ambient., 18, 688 (2014).
L. Lin, H. Allemekinders, A. Dansby, L. Campbell, S. Durance-Tod, A. Berger and P.J.H. Jones, Nutr. Rev., 71, 370 (2013).
United States Department of Agriculture Economic Research Service, http://www.ers.usda.gov/topics/crops/soybeans-oil-crops/canola.aspx.
M.K. Sung, M.H. Kim, H.J. Seo and J.I. Chung, Plant Breed. Biotechnol.,1, 9 (2013).
S.B. Lee, K.H. Han, J.D. Lee and I.K. Hong, J. Ind. Eng. Chem., 16, 1006 (2010).
L. Zou and S. Atkinson, Environ. Technol., 24, 1253 (2003).
I.H. Hong, J.R. Lee and S.B. Lee, J. Ind. Eng. Chem., 22, 335 (2015).
E. Öztürk, Fuel Process. Technol., 129, 183 (2015).
S.K. Hoekman, A. Broch, C. Robbins, E. Ceniceros and M. Natarajan, Renew. Sustain. Energy Rev., 16, 143 (2012).
J.S. de Sousa, E.A. Cavalcanti-Oliveira, D.A.G. Aranda and D.M.G. Freire, J. Mol. Catal. B, 65, 133 (2010).
D. Soares, A.F. Pinto, A.G. Gonçalves, D.A. Mitchell and N. Krieger, Biochem. Eng. J., 81, 15 (2013).
H.F. Castro, A.A. Mendes, J.C. Santos and C.L. Aguiar, Quim. Nova, 27, 146 (2004).
S. Hama and A. Kondo, Bioresour. Technol., 135, 386 (2013).
R. Alenezi, G.A. Leeke, R.C.D. Santos and A.R. Khan, Chem. Eng. Res. Des., 87, 867 (2009).
R. Alenezi, M. Baig, J. Wang, R. Santos and G.A. Leeke, Energy Sources, 32, 460 (2010).
F.J. Eller, J.A. Teel and D.E. Palmquist, J. Am. Oil Chem. Soc., 88, 1455 (2011).
T. Kocsisová, J. Juhasz and J. Cvengros, Eur. J. Lipid Sci. Technol., 108, 652 (2006).
J.S.S. Pinto and F.M. Lanças, Quim. Nova, 33, 394 (2010).
M. Ravber, Z. Knez and M. Skerget, J. Supercrit. Fluids, 104, 145 (2015).
R.E. Walker, Official Methods and Recommended Practices of the American Oil Chemists' Society (Method AOCS Ca 5a-40), Champaign: United States (1998).
Aceites y Grasas 46, Tomo XII, No. 1, pp. 84-92 (2002).
L.V. Cocks and C. van Rede, Laboratory Handbook for Oils and Fats Analysis, Academic Press: London (1996).
J.K. Satyarthi, D. Srinivas and P. Ratnasamy, Appl. Catal. A, 391, 427 (2011).
P. Khuwijitjaru, T. Fujii, S. Adachi, Y. Kimura and R. Matsuno, Chem. Eng. J., 99, 1 (2004).
M.N. Baig, R.C.D. Santos, J. King, D. Pioch and S. Bowra, Chem. Eng. Res. Des., 91, 2663 (2013).
H.Y. Shin, J.H. Ryu, S.Y. Park and S.Y. Bae, J. Anal. Appl. Pyrolysis, 98, 250 (2012).
E. Minami and S. Saka, Fuel, 85, 2479 (2006).
A.L. Milliren, J.C. Wissinger, V. Gottumukala and C.A. Schall, Fuel, 108, 277 (2013).
J.H. Ryu, S.Y. Park, S.Y. Bae and H.Y. Shin, J. Chem. Eng. Japan, 47, 399 (2014).
D. Kusdiana and S. Saka, Appl. Biochem. Biotechnol., 115, 781 (2004).
Z. Ilham and S. Saka, Bioresour. Technol., 101, 2735 (2010).
R.D. Micic, M.D. Tomic, F.E. Kiss, E.B. Nikoliæ-Djoric and M.D. Simikic, J. Supercrit. Fluids, 103, 90 (2015).
P. Huang, R.F. Yang, T.Q. Qiu and X.D. Fan, J. Supercrit. Fluids, 81, 221 (2013).
L.P. Toralles, C.T. Alves, E.A. Torres, H.M.C. Andrade, F.L.P. Pessoa and S.A.B.V. de Melo, Chem. Eng. Transc., 43, 565 (2015).
J.W. King, R.L. Holliday and G.R. List, Green Chem., 1, 261 (1999)