Copyright (c) 2020 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Kinetics of Micellar Effect of Non-Ionic Surfactant on Oxidative Degradation of Ciprofloxacin
Corresponding Author(s) : Alpa Shrivastava
Asian Journal of Chemistry,
Vol. 32 No. 2 (2020): Vol 32 Issue 2
Abstract
Oxidative degradation kinetics of leading fluoroquinolone family drug ciprofloxacin (CIP) by chloramine-T (CAT) in TX-100 micelle media was studied spectrophotometrically at 275 nm and 298 K. In pseudo-first-order conditions the rate constant (kobs) decreased regularly with increasing [TX-100]. To understand the self-organizing activities of TX-100, CMC values in varying reaction conditions had been evaluated. The role of non-ionic surfactant in the oxidative degradation process of ciprofloxacin by chlorinating agent chloramine-T is explained in terms of mathematical model explained by Menger-Portnoy. The reaction showed first to zero order dependence on [CAT] and fractional order on [CIP]. Increasing [H+] decreased the rate of reaction. The effect of ionic strength and solvent polarity of the medium in reaction conditions were studied. The effects of added salts [HSO4Na], [KCl], [KNO3] and [K2SO4] had also been studied. The stoichiometry of the reaction determined was 1:2 and the oxidation products were identified by LC-EI-MS. The analysis of degradation product of ciprofloxacin evidently reveals that the piperazine moiety is active site for oxidation in the reaction. Activation parameters were studied to propose appropriate mechanism for the reaction.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Parlia, A. Dukhin and P. Somasundaran, J. Electrochem. Soc., 164, E295 (2017); https://doi.org/10.1149/2.0191712jes.
- B.L. Tardy, S. Yokota, M. Ago, W. Xiang, T. Kondo, R. Bordes and O.J. Rojas, Curr. Opin. Colloid Interface Sci., 29, 57 (2017); https://doi.org/10.1016/j.cocis.2017.02.004.
- S. Paria, C. Manohar and K.C. Khilar, Colloids Surf. A Physicochem. Eng. Asp., 252, 221 (2005); https://doi.org/10.1016/j.colsurfa.2004.09.022.
- S. Paria, C. Manohar and K.C. Khilar, Ind. Eng. Chem. Res., 44, 3091 (2005); https://doi.org/10.1021/ie049471a.
- J. Song, W.E. Krause and O.J. Rojas, J. Colloid Interface Sci., 420, 174 (2014); https://doi.org/10.1016/j.jcis.2014.01.012.
- Q. Sun, Z.-L. Li, Y.-Z. Wang, C.-X. Yang, J.S. Chung and A.-J. Wang, J. Bioresour. Bioprod., 208, 64 (2016); https://doi.org/10.1016/j.biortech.2016.02.003.
- G. Li, G. Lan, Y. Liu, C. Chen, L. Lei, J. Du, Y. Lu, Q. Li, G. Du and J. Zhang, RSC Adv., 7, 31018 (2017); https://doi.org/10.1039/C7RA02105D.
- H.J.Y. El-Aila, J. Dispers. Sci. Technol., 30, 1277 (2009); https://doi.org/10.1080/01932690902735207.
- O.D. Velev, T.D. Gurkov, S.K. Chakarova, B.I. Dimitrova, I.B. Ivanov and R.P. Borwankar, Colloids Surf. A Physicochem. Eng. Asp., 83, 43 (1994); https://doi.org/10.1016/0927-7757(93)02639-V.
- J. Eastoe, S. Gold, S.E. Rogers, A. Paul, T. Welton, R.K. Heenan and I. Grillo, J. Am. Chem. Soc., 127, 7302 (2005); https://doi.org/10.1021/ja051155f.
- K. Jahan, S. Balzer and P. Mosto, WIT Trans. Ecol. Environ., 110, 281 (2008); https://doi.org/10.2495/ETOX080301.
- P. Ghosh, Colloid & Interface Science, PHI Learning Private Limited, New Delhi, India, pp. 72 (2009).
- A. Shrivastava, A.K. Singh, N. Sachdev, D.R. Shrivastava and Y.R. Katre, J. Dispers. Sci. Technol., 33, 1752 (2012); https://doi.org/10.1080/01932691.2011.629534.
- A. Shrivastava, A.K. Singh, N. Sachdev, D.R. Shrivastava, Y.R. Katre, S.P. Singh, M. Singh and J.C. Mejuto, J. Mol. Catal. Chem., 361-362, 1 (2012); https://doi.org/10.1016/j.molcata.2012.04.004.
- A. Shrivastava, A.K. Singh, N. Sachdev, D.R. Shrivastava and S. Prasad, Environ. Chem., 14, 231 (2017); https://doi.org/10.1071/EN17034.
- C. Postigo and D. Barcelo, Sci. Total Environ., 503, 32 (2015); https://doi.org/10.1016/j.scitotenv.2014.06.019.
- S.D. Richardson and S.Y. Kimura, Anal. Chem., 88, 546 (2016); https://doi.org/10.1021/acs.analchem.5b04493.
- M.C. Collivignarelli, A. Abbà, G. Alloisio, E. Gozio and I. Benigna, Sustainability, 9, 1704 (2017); https://doi.org/10.3390/su9101704.
- S. Sorlini, M. Biasibetti, F. Gialdini and M.C. Collivignarelli, Water Supply, 16, 333 (2016); https://doi.org/10.2166/ws.2015.142.
- M. Dasgupta, S. Dasgupta and M.K. Mahanti, Oxid. Commun., 36, 687 (2013).
- M. Múñoz, A. Rodríguez, M. del Mar Graciani and M.L. Moyá, Langmuir, 15, 2254 (1999); https://doi.org/10.1021/la980293y.
- E. Pandey, N. Grover, N. Kamboo and S.K. Upadhayay, Indian J. Chem., 43A, 1186 (2004).
- H. Zhang and C.H. Huang, Environ. Sci. Technol., 39, 4474 (2005); https://doi.org/10.1021/es048166d.
- X. Van Doorslaer, K. Demeestere, P.M. Heynderickx, H. Van Langenhove and J. Dewulf, J. Appl. Catal. B, 101, 540 (2011); https://doi.org/10.1016/j.apcatb.2010.10.027.
- A. Cipiciani, G. Savelli and C.A. Bunton, J. Phys. Chem., 87, 5259 (1983); https://doi.org/10.1021/j150643a040.
- J.D. Atwood, Inorganic and Organometallic Reaction Mechanisms, John Wiley & Sons: New Jersey, edn 2, p. 58 (1996).
- F.M. Menger and C.E. Portnoy, J. Am. Chem. Soc., 89, 4698 (1967); https://doi.org/10.1021/ja00994a023.
- C.A. Bunton and G. Cerichelli, Int. J. Chem. Kinet., 12, 519 (1980); https://doi.org/10.1002/kin.550120803.
- A.K. Das, Coord. Chem. Rev., 248, 81 (2004); https://doi.org/10.1016/j.cct.2003.10.012.
References
S. Parlia, A. Dukhin and P. Somasundaran, J. Electrochem. Soc., 164, E295 (2017); https://doi.org/10.1149/2.0191712jes.
B.L. Tardy, S. Yokota, M. Ago, W. Xiang, T. Kondo, R. Bordes and O.J. Rojas, Curr. Opin. Colloid Interface Sci., 29, 57 (2017); https://doi.org/10.1016/j.cocis.2017.02.004.
S. Paria, C. Manohar and K.C. Khilar, Colloids Surf. A Physicochem. Eng. Asp., 252, 221 (2005); https://doi.org/10.1016/j.colsurfa.2004.09.022.
S. Paria, C. Manohar and K.C. Khilar, Ind. Eng. Chem. Res., 44, 3091 (2005); https://doi.org/10.1021/ie049471a.
J. Song, W.E. Krause and O.J. Rojas, J. Colloid Interface Sci., 420, 174 (2014); https://doi.org/10.1016/j.jcis.2014.01.012.
Q. Sun, Z.-L. Li, Y.-Z. Wang, C.-X. Yang, J.S. Chung and A.-J. Wang, J. Bioresour. Bioprod., 208, 64 (2016); https://doi.org/10.1016/j.biortech.2016.02.003.
G. Li, G. Lan, Y. Liu, C. Chen, L. Lei, J. Du, Y. Lu, Q. Li, G. Du and J. Zhang, RSC Adv., 7, 31018 (2017); https://doi.org/10.1039/C7RA02105D.
H.J.Y. El-Aila, J. Dispers. Sci. Technol., 30, 1277 (2009); https://doi.org/10.1080/01932690902735207.
O.D. Velev, T.D. Gurkov, S.K. Chakarova, B.I. Dimitrova, I.B. Ivanov and R.P. Borwankar, Colloids Surf. A Physicochem. Eng. Asp., 83, 43 (1994); https://doi.org/10.1016/0927-7757(93)02639-V.
J. Eastoe, S. Gold, S.E. Rogers, A. Paul, T. Welton, R.K. Heenan and I. Grillo, J. Am. Chem. Soc., 127, 7302 (2005); https://doi.org/10.1021/ja051155f.
K. Jahan, S. Balzer and P. Mosto, WIT Trans. Ecol. Environ., 110, 281 (2008); https://doi.org/10.2495/ETOX080301.
P. Ghosh, Colloid & Interface Science, PHI Learning Private Limited, New Delhi, India, pp. 72 (2009).
A. Shrivastava, A.K. Singh, N. Sachdev, D.R. Shrivastava and Y.R. Katre, J. Dispers. Sci. Technol., 33, 1752 (2012); https://doi.org/10.1080/01932691.2011.629534.
A. Shrivastava, A.K. Singh, N. Sachdev, D.R. Shrivastava, Y.R. Katre, S.P. Singh, M. Singh and J.C. Mejuto, J. Mol. Catal. Chem., 361-362, 1 (2012); https://doi.org/10.1016/j.molcata.2012.04.004.
A. Shrivastava, A.K. Singh, N. Sachdev, D.R. Shrivastava and S. Prasad, Environ. Chem., 14, 231 (2017); https://doi.org/10.1071/EN17034.
C. Postigo and D. Barcelo, Sci. Total Environ., 503, 32 (2015); https://doi.org/10.1016/j.scitotenv.2014.06.019.
S.D. Richardson and S.Y. Kimura, Anal. Chem., 88, 546 (2016); https://doi.org/10.1021/acs.analchem.5b04493.
M.C. Collivignarelli, A. Abbà, G. Alloisio, E. Gozio and I. Benigna, Sustainability, 9, 1704 (2017); https://doi.org/10.3390/su9101704.
S. Sorlini, M. Biasibetti, F. Gialdini and M.C. Collivignarelli, Water Supply, 16, 333 (2016); https://doi.org/10.2166/ws.2015.142.
M. Dasgupta, S. Dasgupta and M.K. Mahanti, Oxid. Commun., 36, 687 (2013).
M. Múñoz, A. Rodríguez, M. del Mar Graciani and M.L. Moyá, Langmuir, 15, 2254 (1999); https://doi.org/10.1021/la980293y.
E. Pandey, N. Grover, N. Kamboo and S.K. Upadhayay, Indian J. Chem., 43A, 1186 (2004).
H. Zhang and C.H. Huang, Environ. Sci. Technol., 39, 4474 (2005); https://doi.org/10.1021/es048166d.
X. Van Doorslaer, K. Demeestere, P.M. Heynderickx, H. Van Langenhove and J. Dewulf, J. Appl. Catal. B, 101, 540 (2011); https://doi.org/10.1016/j.apcatb.2010.10.027.
A. Cipiciani, G. Savelli and C.A. Bunton, J. Phys. Chem., 87, 5259 (1983); https://doi.org/10.1021/j150643a040.
J.D. Atwood, Inorganic and Organometallic Reaction Mechanisms, John Wiley & Sons: New Jersey, edn 2, p. 58 (1996).
F.M. Menger and C.E. Portnoy, J. Am. Chem. Soc., 89, 4698 (1967); https://doi.org/10.1021/ja00994a023.
C.A. Bunton and G. Cerichelli, Int. J. Chem. Kinet., 12, 519 (1980); https://doi.org/10.1002/kin.550120803.
A.K. Das, Coord. Chem. Rev., 248, 81 (2004); https://doi.org/10.1016/j.cct.2003.10.012.