Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Microwave Assisted Efficient Synthesis of Flavone using ZnO Nanoparticles as Promoter under Solvent-Free Conditions
Corresponding Author(s) : Nitin M. Thorat
Asian Journal of Chemistry,
Vol. 31 No. 5 (2019): Vol 31 Issue 5
Abstract
A simple and highly efficient protocol for synthesis of flavones from 1-(2-hydroxyphenyl)-3-aryl-1,3-propanediones in presence of ZnO nanoparticles as a promoter in thermal as well as microwave irradiation under solvent-free conditions have been demonstrated. The catalyst is inexpensive, stable, can be easily recycled/reused for several cycles with consistent activity and observed almost same yield confirming the stability of the catalyst. It is believed that the present approach will become an alternative route for the conventional reactions. Because in this protocol, yield is quite high, short reaction time, simple work up, catalyst can be recycled as well as it is free of any hazardous by-products formation during workup.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- V.C. Blank, C. Poli, M. Marder and L.P. Roguin, Bioorg. Med. Chem. Lett., 14, 133 (2004); https://doi.org/10.1016/j.bmcl.2003.10.029.
- A.K. Verma and R. Pratap, Nat. Prod. Rep., 27, 1571 (2010); https://doi.org/10.1039/c004698c.
- T.P.T. Cushnie and A. Lamb, Int. J. Antimicrob. Agents, 26, 343 (2005); https://doi.org/10.1016/j.ijantimicag.2005.09.002.
- B. Havsteen, Biochem. Pharmacol., 32, 1141 (1983); https://doi.org/10.1016/0006-2952(83)90262-9.
- E. Middleton Jr. and K. Chithan, ed.: J.B. Harborne, The Flavonoids: Advances in Research Since 1986; Chapman & Hall: London, pp. 619-652 (1993).
- S. Martens and A. Mithofer, Phytochemistry, 66, 2399 (2005); https://doi.org/10.1016/j.phytochem.2005.07.013.
- N.C. Veitch and R.J. Grayer, Nat. Prod. Rep., 25, 555 (2008); https://doi.org/10.1039/b718040n.
- A. Crozier, I.B. Jaganath and M.N. Clifford, Nat. Prod. Rep., 26, 1001 (2009); https://doi.org/10.1039/b802662a.
- U. Sequin, The Antibiotics of the Pluramycin Group (4H-Anthra [1,2-b]- pyran Antibiotics), In: Progress in the Chemistry of Organic Natural Products, Springer: Vienna, vol. 50, pp. 57-122 (1986).
- M.R. Hansen and L.H. Hurley, Acc. Chem. Res., 29, 249 (1996); https://doi.org/10.1021/ar950167a.
- J. Gabrielska, M. Soczyñska-Kordala and S. Przestalski, J. Agric. Food Chem., 53, 76 (2005); https://doi.org/10.1021/jf0401120.
- J. Allan and R. Robinson, J. Chem. Soc., 125, 2192 (1924); https://doi.org/10.1039/CT9242502192.
- W. Baker, J. Chem. Soc., 1381 (1933); https://doi.org/10.1039/jr9330001381.
- H.S. Mahal and K. Venkataraman, J. Chem. Soc., 1767 (1934); https://doi.org/10.1039/jr9340001767.
- N.M. Thorat, S.R. Kote and S.R. Thopate, Lett. Org. Chem., 11, 601 (2014); https://doi.org/10.2174/157017861108140613163214.
- L. Rout, T.K. Sen and T. Punniyamurthy, Angew. Chem. Int. Ed., 46, 5583 (2007); https://doi.org/10.1002/anie.200701282.
- B.M. Choudary, M.L. Kantam, K.V.S. Ranganath, K. Mahendar and B. Sreedhar, J. Am. Chem. Soc., 126, 3396 (2004); https://doi.org/10.1021/ja038954n.
- F.M. Moghaddam, H. Saeidian, Z. Mirjafary and A. Sadeghi, J. Iran Chem. Soc., 6, 317 (2009); https://doi.org/10.1007/BF03245840.
- S. Chand and J.S. Sandhu, Indian J. Chem., 54B, 1350 (2015).
- D. Mulugeta, B. Abdisa, A. Belay and M. Endale, Chem. Mater. Res., 10, 1 (2018).
- C. Tamuly, I. Saikia, M. Hazarika, M. Bordoloi, N. Hussain, M.R. Das and K. Deka, RSC Adv., 5, 8604 (2015); https://doi.org/10.1039/C4RA14225J.
- N. Shantikumar, A. Sasidharan, V.V. Divya Rani, D. Menon, S. Nair, K. Manzoor and S. Raina, Mater. Sci. Mater. Med., 20, 235 (2009); https://doi.org/10.1007/s10856-008-3548-5.
- M. Premanathan, K. Karthikeyan, K. Jeyasubramanian and M. Govindasamy, Nanomedicine, 7, 184 (2011); https://doi.org/10.1016/j.nano.2010.10.001.
- N.M. Thorat, R.A. Dengale, S.R. Thopate and S.V. Rohokale, Lett. Org. Chem., 12, 574 (2015); https://doi.org/10.2174/1570178612666150624172950.
References
V.C. Blank, C. Poli, M. Marder and L.P. Roguin, Bioorg. Med. Chem. Lett., 14, 133 (2004); https://doi.org/10.1016/j.bmcl.2003.10.029.
A.K. Verma and R. Pratap, Nat. Prod. Rep., 27, 1571 (2010); https://doi.org/10.1039/c004698c.
T.P.T. Cushnie and A. Lamb, Int. J. Antimicrob. Agents, 26, 343 (2005); https://doi.org/10.1016/j.ijantimicag.2005.09.002.
B. Havsteen, Biochem. Pharmacol., 32, 1141 (1983); https://doi.org/10.1016/0006-2952(83)90262-9.
E. Middleton Jr. and K. Chithan, ed.: J.B. Harborne, The Flavonoids: Advances in Research Since 1986; Chapman & Hall: London, pp. 619-652 (1993).
S. Martens and A. Mithofer, Phytochemistry, 66, 2399 (2005); https://doi.org/10.1016/j.phytochem.2005.07.013.
N.C. Veitch and R.J. Grayer, Nat. Prod. Rep., 25, 555 (2008); https://doi.org/10.1039/b718040n.
A. Crozier, I.B. Jaganath and M.N. Clifford, Nat. Prod. Rep., 26, 1001 (2009); https://doi.org/10.1039/b802662a.
U. Sequin, The Antibiotics of the Pluramycin Group (4H-Anthra [1,2-b]- pyran Antibiotics), In: Progress in the Chemistry of Organic Natural Products, Springer: Vienna, vol. 50, pp. 57-122 (1986).
M.R. Hansen and L.H. Hurley, Acc. Chem. Res., 29, 249 (1996); https://doi.org/10.1021/ar950167a.
J. Gabrielska, M. Soczyñska-Kordala and S. Przestalski, J. Agric. Food Chem., 53, 76 (2005); https://doi.org/10.1021/jf0401120.
J. Allan and R. Robinson, J. Chem. Soc., 125, 2192 (1924); https://doi.org/10.1039/CT9242502192.
W. Baker, J. Chem. Soc., 1381 (1933); https://doi.org/10.1039/jr9330001381.
H.S. Mahal and K. Venkataraman, J. Chem. Soc., 1767 (1934); https://doi.org/10.1039/jr9340001767.
N.M. Thorat, S.R. Kote and S.R. Thopate, Lett. Org. Chem., 11, 601 (2014); https://doi.org/10.2174/157017861108140613163214.
L. Rout, T.K. Sen and T. Punniyamurthy, Angew. Chem. Int. Ed., 46, 5583 (2007); https://doi.org/10.1002/anie.200701282.
B.M. Choudary, M.L. Kantam, K.V.S. Ranganath, K. Mahendar and B. Sreedhar, J. Am. Chem. Soc., 126, 3396 (2004); https://doi.org/10.1021/ja038954n.
F.M. Moghaddam, H. Saeidian, Z. Mirjafary and A. Sadeghi, J. Iran Chem. Soc., 6, 317 (2009); https://doi.org/10.1007/BF03245840.
S. Chand and J.S. Sandhu, Indian J. Chem., 54B, 1350 (2015).
D. Mulugeta, B. Abdisa, A. Belay and M. Endale, Chem. Mater. Res., 10, 1 (2018).
C. Tamuly, I. Saikia, M. Hazarika, M. Bordoloi, N. Hussain, M.R. Das and K. Deka, RSC Adv., 5, 8604 (2015); https://doi.org/10.1039/C4RA14225J.
N. Shantikumar, A. Sasidharan, V.V. Divya Rani, D. Menon, S. Nair, K. Manzoor and S. Raina, Mater. Sci. Mater. Med., 20, 235 (2009); https://doi.org/10.1007/s10856-008-3548-5.
M. Premanathan, K. Karthikeyan, K. Jeyasubramanian and M. Govindasamy, Nanomedicine, 7, 184 (2011); https://doi.org/10.1016/j.nano.2010.10.001.
N.M. Thorat, R.A. Dengale, S.R. Thopate and S.V. Rohokale, Lett. Org. Chem., 12, 574 (2015); https://doi.org/10.2174/1570178612666150624172950.