Copyright (c) 2020 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Cyanuric Chloride Containing Chalcones for Possible Breast Cancer Treatment: Synthesis, Antimicrobial and in silico Screening
Corresponding Author(s) : A. Arun
Asian Journal of Chemistry,
Vol. 32 No. 2 (2020): Vol 32 Issue 2
Abstract
In this work, we have synthesized efficient antibacterial compounds with anticancer novel molecules based on cyanuric chloride containing chalcone moiety. For this, novel triazine-based organic molecules were synthesized by using cyanuric chloride and 2,4-dichloro-1-ene(4-hydroxyphenyl)phenone and characterized by elemental analysis, FT-IR, NMR and UV-visible spectrometry techniques. Melting point of the molecules were increased with an increase in substitution on cyanuric chloride. The minimum inhibitory concentration (MIC) value of the synthesized compounds showed an excellent result on Gram-negative bacteria with low MIC value of 1.95 μg/mL. Gram-positive bacteria showed little resistance to the synthesized drug. The synthesized compounds were tested for their use as an anticancer drug using in silico screening method. The synthesized compounds in silico molecular docking method using breast cancer protein (BRCA2) confirms that triazine derivative with all three chlorine molecules replaced by 2,4-dichloro-1-ene(4-hydroxyphenyl)phenone showed highest binding energy with the value of -9.1900 Kcal/mol which is in agreement with the observed high MIC value obtained for Gram-negative bacteria. The synthesized molecules preferentially targeted the topoisomerase II of the bacteria. Overall, an efficient antimicrobial drug is synthesized using a simple preparation method.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- G.V.M. Sharma, J.J. Reddy, P.S. Lakshi and P. Radhakrishnan,Tetrahedron Lett., 45, 7729 (2004);https://doi.org/10.1016/j.tetlet.2004.08.084.
- A. Solankee, K. Kapadia, Ana Ciric, M. Sokovic, I. Doytchinova and A. Geronikaki, Eur. J. Med. Chem., 45, 510 (2010); https://doi.org/10.1016/j.ejmech.2009.10.037.
- A. Hou, M. Zhou and X. Wang, Carbohydr. Polym., 75, 328 (2009); https://doi.org/10.1016/j.carbpol.2008.07.032.
- N.C. Desai, A.H. Makwana and K.M. Rajpara, J. Saudi Chem. Soc., 20, S334 (2016); https://doi.org/10.1016/j.jscs.2012.12.004.
- Z.E. Koc, H. Bingol, A.O. Saf, E. Torlak and A. Coskun, J. Hazard. Mater., 183, 251 (2010); https://doi.org/10.1016/j.jhazmat.2010.07.018.
- H.R. Bhat, U.P. Singh, P. Gahtori, S.K. Ghosh, K. Gogoi, A. Prakash and R.K. Singh, Chem. Biol. Drug Des., 86, 265 (2015); https://doi.org/10.1111/cbdd.12490.
- G. Jagadeesh Kumar, H.V.S. Sriramkumar Bomma, E. Srihari, S. Shrivastava, V.G.M. Naidu, K. Srinivas and V. Jayathirtha Rao, Med. Chem. Res., 22, 5973 (2013); https://doi.org/10.1007/s00044-013-0584-6.
- W.C. Zhou, Z.M. Xin, X.P. Zhang, J. Shen and Q.P. Qiu, Yao Xue Xue Bao, 31, 823 (1996).
- R. Menicagli, S. Samaritani, G. Signore, F. Vaglini and L. Dalla Via, J. Med. Chem., 47, 4649 (2004); https://doi.org/10.1021/jm0495374.
- B.B. Baldaniya and P.K. Patel, E-J. Chem., 6, 673 (2009); https://doi.org/10.1155/2009/196309.
- K. Venkataraman and D.R. Wagle, Tetrahedron Lett., 20, 3037 (1979); https://doi.org/10.1016/S0040-4039(00)71006-9.
- R. Patel, P. Kumar and K. Chikalia, Der Pharm. Chem., 2, 232 (2010).
- E.M. Krovat, T. Steindl and T. Langer, Curr. Comp. Aided Drug Design., 1, 93 (2005); https://doi.org/10.2174/1573409052952314.
- S.K. Venkatesan, A.K. Shukla and V.K. Dubey, J. Comput. Chem., 31, 2463 (2010); https://doi.org/10.1002/jcc.21538.
- J. Suresh, E. Vakees, S. Karthik, M. Kayalvizhi and A. Arun, Des. Monomers Polym., 17, 753 (2014); https://doi.org/10.1080/15685551.2014.918014.
- A.K. Ghose and G.M. Crippen, J. Chem. Inf. Comput. Sci., 27, 21 (1987); https://doi.org/10.1021/ci00053a005.
- T.A. Binkowski, S. Naghibzadeg and J. Liang, Nucleic Acids Res., 31, 3352 (2003); https://doi.org/10.1093/nar/gkg512.
- S.M. Vidya, V. Krishna, B.K. Manjunatha, B.R. Bharath, K.P. Rajesh, H. Manjunatha and K.L. Mankani, Med. Chem. Res., 21, 3195 (2012); https://doi.org/10.1007/s00044-011-9860-5.
- S.D.S. Shruthi, S. Padmalatha Rai and Y.L. Ramachandra, Med. Chem. Res., 22, 2938 (2013); https://doi.org/10.1007/s00044-012-0295-4.
- R.A. Laskowski and M.B. Swindells, J. Chem. Inf. Model., 51, 2778 (2011); https://doi.org/10.1021/ci200227u.
- B. Fournier, X. Zhao, T. Lu, K. Drlica and D.C. Hooper, Antimicrob. Agents Chemother., 44, 2160 (2000); https://doi.org/10.1128/AAC.44.8.2160-2165.2000.
- D. Lafitte, V. Lamour, P.O. Tsvetkov, A.A. Makarov, M. Klich, P. Deprez, D. Moras, C. Briand and R. Gilli, Biochemistry, 41, 7217 (2002); https://doi.org/10.1021/bi0159837.
References
G.V.M. Sharma, J.J. Reddy, P.S. Lakshi and P. Radhakrishnan,Tetrahedron Lett., 45, 7729 (2004);https://doi.org/10.1016/j.tetlet.2004.08.084.
A. Solankee, K. Kapadia, Ana Ciric, M. Sokovic, I. Doytchinova and A. Geronikaki, Eur. J. Med. Chem., 45, 510 (2010); https://doi.org/10.1016/j.ejmech.2009.10.037.
A. Hou, M. Zhou and X. Wang, Carbohydr. Polym., 75, 328 (2009); https://doi.org/10.1016/j.carbpol.2008.07.032.
N.C. Desai, A.H. Makwana and K.M. Rajpara, J. Saudi Chem. Soc., 20, S334 (2016); https://doi.org/10.1016/j.jscs.2012.12.004.
Z.E. Koc, H. Bingol, A.O. Saf, E. Torlak and A. Coskun, J. Hazard. Mater., 183, 251 (2010); https://doi.org/10.1016/j.jhazmat.2010.07.018.
H.R. Bhat, U.P. Singh, P. Gahtori, S.K. Ghosh, K. Gogoi, A. Prakash and R.K. Singh, Chem. Biol. Drug Des., 86, 265 (2015); https://doi.org/10.1111/cbdd.12490.
G. Jagadeesh Kumar, H.V.S. Sriramkumar Bomma, E. Srihari, S. Shrivastava, V.G.M. Naidu, K. Srinivas and V. Jayathirtha Rao, Med. Chem. Res., 22, 5973 (2013); https://doi.org/10.1007/s00044-013-0584-6.
W.C. Zhou, Z.M. Xin, X.P. Zhang, J. Shen and Q.P. Qiu, Yao Xue Xue Bao, 31, 823 (1996).
R. Menicagli, S. Samaritani, G. Signore, F. Vaglini and L. Dalla Via, J. Med. Chem., 47, 4649 (2004); https://doi.org/10.1021/jm0495374.
B.B. Baldaniya and P.K. Patel, E-J. Chem., 6, 673 (2009); https://doi.org/10.1155/2009/196309.
K. Venkataraman and D.R. Wagle, Tetrahedron Lett., 20, 3037 (1979); https://doi.org/10.1016/S0040-4039(00)71006-9.
R. Patel, P. Kumar and K. Chikalia, Der Pharm. Chem., 2, 232 (2010).
E.M. Krovat, T. Steindl and T. Langer, Curr. Comp. Aided Drug Design., 1, 93 (2005); https://doi.org/10.2174/1573409052952314.
S.K. Venkatesan, A.K. Shukla and V.K. Dubey, J. Comput. Chem., 31, 2463 (2010); https://doi.org/10.1002/jcc.21538.
J. Suresh, E. Vakees, S. Karthik, M. Kayalvizhi and A. Arun, Des. Monomers Polym., 17, 753 (2014); https://doi.org/10.1080/15685551.2014.918014.
A.K. Ghose and G.M. Crippen, J. Chem. Inf. Comput. Sci., 27, 21 (1987); https://doi.org/10.1021/ci00053a005.
T.A. Binkowski, S. Naghibzadeg and J. Liang, Nucleic Acids Res., 31, 3352 (2003); https://doi.org/10.1093/nar/gkg512.
S.M. Vidya, V. Krishna, B.K. Manjunatha, B.R. Bharath, K.P. Rajesh, H. Manjunatha and K.L. Mankani, Med. Chem. Res., 21, 3195 (2012); https://doi.org/10.1007/s00044-011-9860-5.
S.D.S. Shruthi, S. Padmalatha Rai and Y.L. Ramachandra, Med. Chem. Res., 22, 2938 (2013); https://doi.org/10.1007/s00044-012-0295-4.
R.A. Laskowski and M.B. Swindells, J. Chem. Inf. Model., 51, 2778 (2011); https://doi.org/10.1021/ci200227u.
B. Fournier, X. Zhao, T. Lu, K. Drlica and D.C. Hooper, Antimicrob. Agents Chemother., 44, 2160 (2000); https://doi.org/10.1128/AAC.44.8.2160-2165.2000.
D. Lafitte, V. Lamour, P.O. Tsvetkov, A.A. Makarov, M. Klich, P. Deprez, D. Moras, C. Briand and R. Gilli, Biochemistry, 41, 7217 (2002); https://doi.org/10.1021/bi0159837.