Copyright (c) 2021 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
One-Pot Synthesis of Pt-Pd Nanospheres Anchored in 2D-Reduced Graphene Oxide Sheets for Electrocatalytic Methanol Oxidation
Corresponding Author(s) : S. Adinarayana Reddy
Asian Journal of Chemistry,
Vol. 33 No. 8 (2021): Vol 33 Issue 8, 2021
Abstract
Recently, direct methanol fuel cells (DMFCs) have been identified as suitable alternatives for efficient energy conversion and pollution-free technology. This study reports the preparation of binary platinum-palladium (Pt-Pd) nanospheres anchored on reduced graphene oxide (rGO) sheets (Pt-Pd/rGO sheets) using a wet chemical technique. The structural and morphological features were analyzed using X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman microscope and Fourier transform infrared (FTIR) spectroscopy. The homogeneous anchored Pt-Pd nanospheres with an average size of 3.85 nm were deposited on to the surface of rGO sheets. Methanol oxidation studies were analyzed through a simple drop coating method using a glassy carbon electrode (GCE). The methanol oxidation performance of the Pt-Pd/rGO nanospheres coated GCE was higher than that of the rGO sheets coated with a single metal (Pt or Pd). The concordant integration of the Pt and Pd nanospheres/rGO-interface improved performance.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- E.G. Snyder, T.H. Watkins, P.A. Solomon, E.D. Thoma, R.W. Williams, G.S.W. Hagler, D. Shelow, D.A. Hindin, V.J. Kilaru and P.W. Preuss, Environ. Sci. Technol., 47, 11369 (2013); https://doi.org/10.1021/es4022602
- J.C. Colmenares, R.F. Colmenares Quintero and I.S. Pieta, Energy Technol., 4, 881 (2016); https://doi.org/10.1002/ente.201600195
- Z. Xiao, Y. Min, M. Liang, L. Liang, C.P. Liu, J.H. Liao and T. Lu, Energy Environ. Sci., 4, 201 (2011); https://doi.org/10.1039/C0EE00278J
- S. Sun and Q. Gao, Rare Met., 30(S1), 42 (2011); https://doi.org/10.1007/s12598-011-0234-4
- L. Gao, W. Yue, S. Tao and L. Fan, Langmuir, 29, 957 (2013); https://doi.org/10.1021/la303663x
- X. Zhang, J. Zhu, C.S. Tiwary, Z. Ma, H. Huang, J. Zhang, Z. Lu, W. Huang and Y. Wu, ACS Appl. Mater. Interfaces, 8, 10858 (2016); https://doi.org/10.1021/acsami.6b01580
- S. Fu, C. Zhu, Q. Shi, D. Du and Y. Lin, Catal. Sci. Technol., 6, 5052 (2016); https://doi.org/10.1039/C5CY02288F
- A. Morozan, B. Jousselme and S. Palacin, Energy Environ. Sci., 4, 1238 (2011); https://doi.org/10.1039/c0ee00601g
- P. Pattanayak, N. Pramanik, P. Kumar and P.P. Kundu, Int. J. Hydrogen Energy, 43, 11505 (2018); https://doi.org/10.1016/j.ijhydene.2017.04.300
- Y. Liu, M. Chi, V. Mazumder, K.L. More, S. Soled, J. Henao and S. Sun, Chem. Mater., 23, 4199 (2011); https://doi.org/10.1021/cm2014785
- W. Hong, J. Wang and E. Wang, Nano Res., 8, 2308 (2015); https://doi.org/10.1007/s12274-015-0741-y
- W. Hong, Y. Liu, J. Wang and E. Wang, J. Power Sources, 241, 751 (2013); https://doi.org/10.1016/j.jpowsour.2013.05.072
- L.X. Ding, A.L. Wang, G.R. Li, Z.Q. Liu, W.X. Zhao, C.Y. Su and Y.X. Tong, J. Am. Chem. Soc., 134, 5730 (2012); https://doi.org/10.1021/ja212206m
- A.C. Chen and P. Holt-Hindle, Chem. Rev., 110, 3767 (2010); https://doi.org/10.1021/cr9003902
- Y.C. Lu, Z.C. Xu, H.A. Gasteiger, S. Chen, K. Hamad-Schifferli and Y. Shao-Horn, J. Am. Chem. Soc., 132, 12170 (2010); https://doi.org/10.1021/ja1036572
- Y.Z. Lu and W. Chen, Chem. Commun., 47, 2541 (2011); https://doi.org/10.1039/C0CC04047A
- J. Greeley, I.E. Stephens, A.S. Bondarenko, T.P. Johansson, H.A. Hansen, T.F. Jaramillo, J. Rossmeisl, I. Chorkendorff and J.K. Norskov, Nat. Chem., 1, 552 (2009); https://doi.org/10.1038/nchem.367
- Y.Z. Zhang, Y.E. Gu, S.X. Lin, J.P. Wei, Z.H. Wang, C.M. Wang, Y. Du and W. Ye, Electrochim. Acta, 56, 8746 (2011); https://doi.org/10.1016/j.electacta.2011.07.094
- X. Zhong, Y.Y. Qin, X.L. Chen, W.L. Xu, G.L. Zhuang, X.N. Li and J. Wang, Carbon, 114, 740 (2017); https://doi.org/10.1016/j.carbon.2016.12.004
- S. Esabattina, V.R. Posa, H. Zhanglian, S. Godlaveeti, R.R. Nagi Reddy and A.R. Somala, Int. J. Hydrogen Energy, 43, 4115 (2018); https://doi.org/10.1016/j.ijhydene.2017.07.193
- J.P. Lai, R. Luque and G.B. Xu, ChemCatChem, 7, 3206 (2015); https://doi.org/10.1002/cctc.201500471
- E. Antolini, Appl. Catal. B, 123-124, 52 (2012); https://doi.org/10.1016/j.apcatb.2012.04.022
- C. Hou, M. Zhang, A. Halder and Q. Chi, Electrochim. Acta, 242, 202 (2017); https://doi.org/10.1016/j.electacta.2017.04.117
- Y. Yang, L.M. Luo, T.F. Guo, Z.X. Dai, R.H. Zhang, C.H. Sun and X.W. Zhou, J. Electroanal. Chem., 783, 132 (2016); https://doi.org/10.1016/j.jelechem.2016.11.034
- L. Sun, H. Wang, K. Eid, S.M. Alshehri, V. Malgras, Y. Yamauchi and L. Wang, Electrochim. Acta, 188, 845 (2016); https://doi.org/10.1016/j.electacta.2015.12.068
- X. Zhang, G. Wu, Z. Cai and X. Chen, Talanta, 134, 132 (2015); https://doi.org/10.1016/j.talanta.2014.11.002
- S. Du, Y. Lu and R. Steinberger-Wilckens, Carbon, 79, 346 (2014); https://doi.org/10.1016/j.carbon.2014.07.076
- J.X. Feng, Q.L. Zhang, A.J. Wang, J. Wei, J.R. Chen and J.J. Feng, Electrochim. Acta, 142, 343 (2014); https://doi.org/10.1016/j.electacta.2014.07.152
- L. Zhang, X.F. Zhang, X.L. Chen, A.J. Wang, D.M. Han, Z.G. Wang and J.J. Feng, J. Colloid Interface Sci., 536, 556 (2019); https://doi.org/10.1016/j.jcis.2018.10.080
- V.R. Posa, V. Annavaram, J.R. Koduru, V.R. Ammireddy and A.R. Somala, Korean J. Chem. Eng., 33, 456 (2016); https://doi.org/10.1007/s11814-015-0145-4
- K. Wu, Q. Zhang, D. Sun, X. Zhu, Y. Chen, T. Lu and Y. Tang, Int. J. Hydrogen Energy, 40, 6530 (2015); https://doi.org/10.1016/j.ijhydene.2015.03.115
- H. Zhang, X. Xu, P. Gu, C. Li, P. Wu and C. Cai, Electrochim. Acta, 56, 7064 (2011); https://doi.org/10.1016/j.electacta.2011.05.118
- W. Qian, R. Hao, J. Zhou, M. Eastman, B.A. Manhat, Q. Sun, A.M. Goforth and J. Jiao, Carbon, 52, 595 (2013); https://doi.org/10.1016/j.carbon.2012.10.031
- T.V. Cuong, V.H. Pham, Q.T. Tran, S.H. Hahn, J.S. Chung, E.W. Shin and E.J. Kim, Mater. Lett., 64, 399 (2010); https://doi.org/10.1016/j.matlet.2009.11.029
- C.L. Lee, H.P. Chiou, S.C. Wu and C.C. Wu, Electrochim. Acta, 56, 687 (2010); https://doi.org/10.1016/j.electacta.2010.09.096
References
E.G. Snyder, T.H. Watkins, P.A. Solomon, E.D. Thoma, R.W. Williams, G.S.W. Hagler, D. Shelow, D.A. Hindin, V.J. Kilaru and P.W. Preuss, Environ. Sci. Technol., 47, 11369 (2013); https://doi.org/10.1021/es4022602
J.C. Colmenares, R.F. Colmenares Quintero and I.S. Pieta, Energy Technol., 4, 881 (2016); https://doi.org/10.1002/ente.201600195
Z. Xiao, Y. Min, M. Liang, L. Liang, C.P. Liu, J.H. Liao and T. Lu, Energy Environ. Sci., 4, 201 (2011); https://doi.org/10.1039/C0EE00278J
S. Sun and Q. Gao, Rare Met., 30(S1), 42 (2011); https://doi.org/10.1007/s12598-011-0234-4
L. Gao, W. Yue, S. Tao and L. Fan, Langmuir, 29, 957 (2013); https://doi.org/10.1021/la303663x
X. Zhang, J. Zhu, C.S. Tiwary, Z. Ma, H. Huang, J. Zhang, Z. Lu, W. Huang and Y. Wu, ACS Appl. Mater. Interfaces, 8, 10858 (2016); https://doi.org/10.1021/acsami.6b01580
S. Fu, C. Zhu, Q. Shi, D. Du and Y. Lin, Catal. Sci. Technol., 6, 5052 (2016); https://doi.org/10.1039/C5CY02288F
A. Morozan, B. Jousselme and S. Palacin, Energy Environ. Sci., 4, 1238 (2011); https://doi.org/10.1039/c0ee00601g
P. Pattanayak, N. Pramanik, P. Kumar and P.P. Kundu, Int. J. Hydrogen Energy, 43, 11505 (2018); https://doi.org/10.1016/j.ijhydene.2017.04.300
Y. Liu, M. Chi, V. Mazumder, K.L. More, S. Soled, J. Henao and S. Sun, Chem. Mater., 23, 4199 (2011); https://doi.org/10.1021/cm2014785
W. Hong, J. Wang and E. Wang, Nano Res., 8, 2308 (2015); https://doi.org/10.1007/s12274-015-0741-y
W. Hong, Y. Liu, J. Wang and E. Wang, J. Power Sources, 241, 751 (2013); https://doi.org/10.1016/j.jpowsour.2013.05.072
L.X. Ding, A.L. Wang, G.R. Li, Z.Q. Liu, W.X. Zhao, C.Y. Su and Y.X. Tong, J. Am. Chem. Soc., 134, 5730 (2012); https://doi.org/10.1021/ja212206m
A.C. Chen and P. Holt-Hindle, Chem. Rev., 110, 3767 (2010); https://doi.org/10.1021/cr9003902
Y.C. Lu, Z.C. Xu, H.A. Gasteiger, S. Chen, K. Hamad-Schifferli and Y. Shao-Horn, J. Am. Chem. Soc., 132, 12170 (2010); https://doi.org/10.1021/ja1036572
Y.Z. Lu and W. Chen, Chem. Commun., 47, 2541 (2011); https://doi.org/10.1039/C0CC04047A
J. Greeley, I.E. Stephens, A.S. Bondarenko, T.P. Johansson, H.A. Hansen, T.F. Jaramillo, J. Rossmeisl, I. Chorkendorff and J.K. Norskov, Nat. Chem., 1, 552 (2009); https://doi.org/10.1038/nchem.367
Y.Z. Zhang, Y.E. Gu, S.X. Lin, J.P. Wei, Z.H. Wang, C.M. Wang, Y. Du and W. Ye, Electrochim. Acta, 56, 8746 (2011); https://doi.org/10.1016/j.electacta.2011.07.094
X. Zhong, Y.Y. Qin, X.L. Chen, W.L. Xu, G.L. Zhuang, X.N. Li and J. Wang, Carbon, 114, 740 (2017); https://doi.org/10.1016/j.carbon.2016.12.004
S. Esabattina, V.R. Posa, H. Zhanglian, S. Godlaveeti, R.R. Nagi Reddy and A.R. Somala, Int. J. Hydrogen Energy, 43, 4115 (2018); https://doi.org/10.1016/j.ijhydene.2017.07.193
J.P. Lai, R. Luque and G.B. Xu, ChemCatChem, 7, 3206 (2015); https://doi.org/10.1002/cctc.201500471
E. Antolini, Appl. Catal. B, 123-124, 52 (2012); https://doi.org/10.1016/j.apcatb.2012.04.022
C. Hou, M. Zhang, A. Halder and Q. Chi, Electrochim. Acta, 242, 202 (2017); https://doi.org/10.1016/j.electacta.2017.04.117
Y. Yang, L.M. Luo, T.F. Guo, Z.X. Dai, R.H. Zhang, C.H. Sun and X.W. Zhou, J. Electroanal. Chem., 783, 132 (2016); https://doi.org/10.1016/j.jelechem.2016.11.034
L. Sun, H. Wang, K. Eid, S.M. Alshehri, V. Malgras, Y. Yamauchi and L. Wang, Electrochim. Acta, 188, 845 (2016); https://doi.org/10.1016/j.electacta.2015.12.068
X. Zhang, G. Wu, Z. Cai and X. Chen, Talanta, 134, 132 (2015); https://doi.org/10.1016/j.talanta.2014.11.002
S. Du, Y. Lu and R. Steinberger-Wilckens, Carbon, 79, 346 (2014); https://doi.org/10.1016/j.carbon.2014.07.076
J.X. Feng, Q.L. Zhang, A.J. Wang, J. Wei, J.R. Chen and J.J. Feng, Electrochim. Acta, 142, 343 (2014); https://doi.org/10.1016/j.electacta.2014.07.152
L. Zhang, X.F. Zhang, X.L. Chen, A.J. Wang, D.M. Han, Z.G. Wang and J.J. Feng, J. Colloid Interface Sci., 536, 556 (2019); https://doi.org/10.1016/j.jcis.2018.10.080
V.R. Posa, V. Annavaram, J.R. Koduru, V.R. Ammireddy and A.R. Somala, Korean J. Chem. Eng., 33, 456 (2016); https://doi.org/10.1007/s11814-015-0145-4
K. Wu, Q. Zhang, D. Sun, X. Zhu, Y. Chen, T. Lu and Y. Tang, Int. J. Hydrogen Energy, 40, 6530 (2015); https://doi.org/10.1016/j.ijhydene.2015.03.115
H. Zhang, X. Xu, P. Gu, C. Li, P. Wu and C. Cai, Electrochim. Acta, 56, 7064 (2011); https://doi.org/10.1016/j.electacta.2011.05.118
W. Qian, R. Hao, J. Zhou, M. Eastman, B.A. Manhat, Q. Sun, A.M. Goforth and J. Jiao, Carbon, 52, 595 (2013); https://doi.org/10.1016/j.carbon.2012.10.031
T.V. Cuong, V.H. Pham, Q.T. Tran, S.H. Hahn, J.S. Chung, E.W. Shin and E.J. Kim, Mater. Lett., 64, 399 (2010); https://doi.org/10.1016/j.matlet.2009.11.029
C.L. Lee, H.P. Chiou, S.C. Wu and C.C. Wu, Electrochim. Acta, 56, 687 (2010); https://doi.org/10.1016/j.electacta.2010.09.096