Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Studies on Acoustic and Aggregation Properties of Sodium Dodecyl Sulfate in Amino Acid Solutions through Ultrasonic Velocity Technique
Corresponding Author(s) : M. Roksana Khatun
Asian Journal of Chemistry,
Vol. 31 No. 5 (2019): Vol 31 Issue 5
Abstract
Acoustic and aggregation properties of sodium dodecyl sulfate in aqueous amino acid systems have been studied through ultrasonic velocity techniques at different temperature as a function of concentration and at different temperature (288.15, 293.15, 298.15, 303.15, 308.15, 313.15, 318.15 and 323.15 K) and atmospheric pressure using density and sound velocity analyzer (DSA 5000, Anton paar, Austria). Densities and ultrasonic velocity of sodium dodecyl sulfate in aqueous amino acid have been measured and from the experimental data, adiabatic compressibility (βS), apparent molar adiabatic compressibility (φk), critical micelle concentration (CMC), acoustic impedance (Z), relative association (RA) and molar sound velocity (Rm) have been calculated. The results show significant information about acoustic properties of sodium dodecyl sulfate (solute-solute interactions, aggregation behaviour, relative association and structure formation) in aqueous and aqueous amino acid solution.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- T.F. Tadros, Applied Surfactants, Wiley-VCH: Weinheim (2005).
- O. Kirk, T.V. Borchert and C.C. Fuglsang, Curr. Opin. Biotechnol., 13, 345 (2002); https://doi.org/10.1016/S0958-1669(02)00328-2.
- M. Lee and J.S. Dordick, Curr. Opin. Biotechnol., 13, 376 (2002); https://doi.org/10.1016/S0958-1669(02)00337-3.
- A.L. Shapiro, E. Viñuela and J. V. Maizel Jr., Biochem. Biophys. Res. Commun., 28, 815 (1967); https://doi.org/10.1016/0006-291X(67)90391-9.
- K. Weber and M. Osborn, J. Biol. Chem., 244, 4406 (1969).
- K. Duquesne and J.N. Sturgis, Methods Mol. Biol., 601, 205 (2010); https://doi.org/10.1007/978-1-60761-344-2_13.
- G.G. Prive, Methods, 41, 388 (2007); https://doi.org/10.1016/j.ymeth.2007.01.007.
- G. Garavito and S.J. Ferguson-Miller, Biol. Chem., 276, 32403 (2001); https://doi.org/10.1074/jbc.R100031200.
- A. Ali, M. Tariq, R. Patel and F.A. Ittoo, Colloid Polym. Sci., 286, 183 (2008); https://doi.org/10.1007/s00396-007-1750-5.
- A. Ali and N.H. Ansari, J. Surfactants Deterg., 13, 441 (2010); https://doi.org/10.1007/s11743-010-1221-8.
- S.K. Singh, A. Kundu and N. Kishore, J. Chem. Thermodyn., 36, 7 (2004); https://doi.org/10.1016/j.jct.2003.09.010.
- M. Vasilescu, D. Angelescu, M. Almgren and A. Valstar, Langmuir, 15, 2635 (1999); https://doi.org/10.1021/la981424y.
- Y. Moriyama and K. Takeda, Langmuir, 15, 2003 (1999); https://doi.org/10.1021/la981442f.
- T. Cserháti, E. Forgács, Z. Deyl, I. Miksik and A. Eckhardt, J. Chromatogr. A, 910, 137 (2001); https://doi.org/10.1016/S0021-9673(00)01191-2.
- R.B. Singh, S. Mahanta and N. Guchhait, Chem. Phys. Lett., 463, 183 (2008); https://doi.org/10.1016/j.cplett.2008.08.017.
- Y. Moriyama, E. Watanabe, K. Kobayashi, H. Harano, E. Inui and K. Takeda, J. Phys. Chem. B, 112, 16585 (2008); https://doi.org/10.1021/jp8067624.
- M.N. Jones, H.A. Skinner, E. Tipping and A. Wilkinson, Biochem. J., 135, 231 (1973); https://doi.org/10.1042/bj1350231.
- C. Blinkhorn and M.N. Jones, Biochem. J., 135, 547 (1973); https://doi.org/10.1042/bj1350547.
- C. Si-Qing, F. Xian-Gang, Y. Jian-Fang and L. Jie-Hua, J. Dispers. Sci. Technol., 28, 297 (2007); https://doi.org/10.1080/01932690601062127.
- A.A. Moosavi-Movahedi, M. Gharanfoli, K. Nazari, M. Shamsipur, J. Chamani, B. Hemmateenejad, M. Alavi, A. Shokrollahi, M. HabibiRezaei, C. Sorenson and N. Sheibani, Colloids Surf. B Biointerfaces, 43, 150 (2005); https://doi.org/10.1016/j.colsurfb.2005.04.008.
- P. Sharma, S. Chauhan, M.S. Chauhan and V.K. Syal, Indian J. Pure Appl. Phys., 46, 839 (2008).
- P. Science and S. De Compostela, Colloid Polym. Sci., 114, 108 (1994).
- S.E. Burke, S.L. Andrecyk and R. Palepu, Colloid Polym. Sci., 279, 131 (2001); https://doi.org/10.1007/s003960000402.
- S. Chauhan, D.S. Rana, K. Rana, M.S. Chauhan and A. Umar, J. Comput. Theor. Nanosci., 5, 178 (2012).
- P.C. Pal and S.P. Das, Int. J. Pharm., 4, 45 (2015).
- H. Kumar and K. Kaur, J. Chem. Eng. Data, 58, 203 (2013); https://doi.org/10.1021/je3006425.
- M.R. Khatun, M.M. Islam, F.R. Rima and M.N. Islam, J. Chem. Eng. Data, 61, 102 (2016); https://doi.org/10.1021/acs.jced.5b00317.
- R. Khatun, R. Sultana and R.K. Nath, Orient. J. Chem., 34, 1755 (2018); https://doi.org/10.13005/ojc/340407.
- R. Khatun and N. Islam, Orient. J. Chem., 28, 165 (2012); https://doi.org/10.13005/ojc/280123.
- D. Shaw, Introduction to Colloid & Surface Chemistry, edn 4 (2013).
References
T.F. Tadros, Applied Surfactants, Wiley-VCH: Weinheim (2005).
O. Kirk, T.V. Borchert and C.C. Fuglsang, Curr. Opin. Biotechnol., 13, 345 (2002); https://doi.org/10.1016/S0958-1669(02)00328-2.
M. Lee and J.S. Dordick, Curr. Opin. Biotechnol., 13, 376 (2002); https://doi.org/10.1016/S0958-1669(02)00337-3.
A.L. Shapiro, E. Viñuela and J. V. Maizel Jr., Biochem. Biophys. Res. Commun., 28, 815 (1967); https://doi.org/10.1016/0006-291X(67)90391-9.
K. Weber and M. Osborn, J. Biol. Chem., 244, 4406 (1969).
K. Duquesne and J.N. Sturgis, Methods Mol. Biol., 601, 205 (2010); https://doi.org/10.1007/978-1-60761-344-2_13.
G.G. Prive, Methods, 41, 388 (2007); https://doi.org/10.1016/j.ymeth.2007.01.007.
G. Garavito and S.J. Ferguson-Miller, Biol. Chem., 276, 32403 (2001); https://doi.org/10.1074/jbc.R100031200.
A. Ali, M. Tariq, R. Patel and F.A. Ittoo, Colloid Polym. Sci., 286, 183 (2008); https://doi.org/10.1007/s00396-007-1750-5.
A. Ali and N.H. Ansari, J. Surfactants Deterg., 13, 441 (2010); https://doi.org/10.1007/s11743-010-1221-8.
S.K. Singh, A. Kundu and N. Kishore, J. Chem. Thermodyn., 36, 7 (2004); https://doi.org/10.1016/j.jct.2003.09.010.
M. Vasilescu, D. Angelescu, M. Almgren and A. Valstar, Langmuir, 15, 2635 (1999); https://doi.org/10.1021/la981424y.
Y. Moriyama and K. Takeda, Langmuir, 15, 2003 (1999); https://doi.org/10.1021/la981442f.
T. Cserháti, E. Forgács, Z. Deyl, I. Miksik and A. Eckhardt, J. Chromatogr. A, 910, 137 (2001); https://doi.org/10.1016/S0021-9673(00)01191-2.
R.B. Singh, S. Mahanta and N. Guchhait, Chem. Phys. Lett., 463, 183 (2008); https://doi.org/10.1016/j.cplett.2008.08.017.
Y. Moriyama, E. Watanabe, K. Kobayashi, H. Harano, E. Inui and K. Takeda, J. Phys. Chem. B, 112, 16585 (2008); https://doi.org/10.1021/jp8067624.
M.N. Jones, H.A. Skinner, E. Tipping and A. Wilkinson, Biochem. J., 135, 231 (1973); https://doi.org/10.1042/bj1350231.
C. Blinkhorn and M.N. Jones, Biochem. J., 135, 547 (1973); https://doi.org/10.1042/bj1350547.
C. Si-Qing, F. Xian-Gang, Y. Jian-Fang and L. Jie-Hua, J. Dispers. Sci. Technol., 28, 297 (2007); https://doi.org/10.1080/01932690601062127.
A.A. Moosavi-Movahedi, M. Gharanfoli, K. Nazari, M. Shamsipur, J. Chamani, B. Hemmateenejad, M. Alavi, A. Shokrollahi, M. HabibiRezaei, C. Sorenson and N. Sheibani, Colloids Surf. B Biointerfaces, 43, 150 (2005); https://doi.org/10.1016/j.colsurfb.2005.04.008.
P. Sharma, S. Chauhan, M.S. Chauhan and V.K. Syal, Indian J. Pure Appl. Phys., 46, 839 (2008).
P. Science and S. De Compostela, Colloid Polym. Sci., 114, 108 (1994).
S.E. Burke, S.L. Andrecyk and R. Palepu, Colloid Polym. Sci., 279, 131 (2001); https://doi.org/10.1007/s003960000402.
S. Chauhan, D.S. Rana, K. Rana, M.S. Chauhan and A. Umar, J. Comput. Theor. Nanosci., 5, 178 (2012).
P.C. Pal and S.P. Das, Int. J. Pharm., 4, 45 (2015).
H. Kumar and K. Kaur, J. Chem. Eng. Data, 58, 203 (2013); https://doi.org/10.1021/je3006425.
M.R. Khatun, M.M. Islam, F.R. Rima and M.N. Islam, J. Chem. Eng. Data, 61, 102 (2016); https://doi.org/10.1021/acs.jced.5b00317.
R. Khatun, R. Sultana and R.K. Nath, Orient. J. Chem., 34, 1755 (2018); https://doi.org/10.13005/ojc/340407.
R. Khatun and N. Islam, Orient. J. Chem., 28, 165 (2012); https://doi.org/10.13005/ojc/280123.
D. Shaw, Introduction to Colloid & Surface Chemistry, edn 4 (2013).