Copyright (c) 2020 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Pyridine Alkaloid Derivatives of Dithiophosphoric Acids and Their Antimicrobial Evaluation
Corresponding Author(s) : Ilyas S. Nizamov
Asian Journal of Chemistry,
Vol. 32 No. 2 (2020): Vol 32 Issue 2
Abstract
A new series of (S)-(–)-nicotinium salts of cyclic dithiophosphoric acids were synthesized by the reactions of 5,5-dimethyl-2-mercapto-2-thiono-1,3,2-dioxaphosphorinane and 4-methyl-2-mercapto-2-thiono-1,3,2-dioxaphosphorinane with (S)-(–)-nicotine. Picolinic and nicotinic acids and potassium pyridine-3-carboxylate reacted with O,O-diterpenyl dithiophosphoric acids on the basis of (1R)-endo-(+)-fenchyl alcohol and (S)-(–)-menthol to afford the corresponding 2-carboxypyridinium, 3-carboxypyridinium and potassium pyridinium-3-carboxylate dithiophosphates. The antibacterial and antifungal activity of (S)-(–)-nicotinium 4-methyl-2-mercapto-2-thiono-1,3,2-dioxaphosphorinane and salts of O,O-diterpenyl dithiophosphoric acids on the basis of nicotine and nicotinamide were evaluated.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- E. Fattorusso and O. Taglialatela-Scafati, Modern Alkaloids, Structure, Isolation, Synthesis and Biology, Wiley-VCH, Weinheim (2008).
- J.W. Gorrod and P. Jacob, Analytical Determination of Nicotine and Related Compounds and their Metabolites, Elsevier Science B.V. (1999).
- J. Zempleni, J.W. Suttie, J.F. Gregory and P.J. Stover, Handbook of Vitamins, CRC Press, edn 5 pp 605 (2013).
- R.Y. Morjan, A.M. Mkadmh, I. Beadham, A.A. Elmanama, M.R. Mattar, J. Raftery, R.G. Pritchard, A.M. Awadallah and J.M. Gardiner, Bioorg. Med. Chem. Lett., 24, 5796 (2014); https://doi.org/10.1016/j.bmcl.2014.10.029.
- N.B. Patel, A.C. Purohit, D.P. Rajani, R. Moo-Puc and G. Rivera, Eur. J. Med. Chem., 62, 677 (2013); https://doi.org/10.1016/j.ejmech.2012.12.055.
- Z.H. Chohan, A. Rauf, S. Noreen, A. Scozzafava and C.T. Supuran, J. Enzyme Inhib. Med. Chem., 17, 101 (2002); https://doi.org/10.1080/14756360290024209.
- V. Judge, B. Narasimhan, M. Ahuja, D. Sriram, P. Yogeeswari, E. De Clercq, C. Pannecouque and J. Balzarini, Med. Chem., 9, 53 (2012); https://doi.org/10.2174/1573406411309010053.
- P.T. Gandhi, T.N. Athmaram and G.R. Arunkumar, Bioorg. Med. Chem., 24, 1637 (2016); https://doi.org/10.1016/j.bmc.2016.02.035.
- Y.-H. Ye, L. Ma, Z.-C. Dai, Y. Xiao, Y.-Y. Zhang, D.-D. Li, J.-X. Wang and H.-L. Zhu, J. Agric. Food Chem., 62, 4063 (2014); https://doi.org/10.1021/jf405437k.
- M. Adamiec, J. Adamus, I. Ciebiada, A. Denys and J. Gebicki, Pharmacol. Rep., 58, 246 (2006).
- P.S. Erickson, M.R. Murphy and J.H. Clark, J. Dairy Sci., 75, 1078 (1992); https://doi.org/10.3168/jds.S0022-0302(92)77852-7.
- R.A. Akhmadishina, E.V. Kuznetsova, G.R. Sadrieva, L.R. Sabirzyanova, I.S. Nizamov, G.R. Akhmedova, I.D. Nizamov and T.I. Abdullin, Peptides, 99, 179 (2018); https://doi.org/10.1016/j.peptides.2017.10.002.
- T. Dang, I.S. Nizamov, R.Z. Salikhov, L.R. Sabirzyanova, V.V. Vorobev, T.I. Burganova, M.M. Shaidoullina, E.S. Batyeva, R.A. Cherkasov and T.I. Abdullin, Bioorg. Med. Chem., 27, 100 (2019); https://doi.org/10.1016/j.bmc.2018.11.017.
- I.S. Nizamov, G.G. Shumatbaev, I.D. Nizamov, R.Z. Salikhov, Ye.N. Nikitin, M.P. Shulaeva, O.K. Pozdeev, E.S. Batyeva and R.A. Cherkasov, Chem. Select, 4, 1681 (2019); https://doi.org/10.1002/slct.201802783.
- I.S. Nizamov, A.V. Sofronov, L.A. Al’metkina, R.Z. Musin and R.A. Cherkasov, Russ. J. Gen. Chem., 80, 1722 (2010); https://doi.org/10.1134/S1070363210080268.
- I.S. Nizamov, G.T. Gabdullina, D.A. Terenzhev, A.R. Nurmukhametov, I.D. Nizamov and R.A. Cherkasov, Phosphorus Sulfur Silicon Relat. Elem., 189, 1354 (2014); https://doi.org/10.1080/10426507.2013.860531.
- H.P.S. Chauhan, C.P. Bhasin, G. Srivastava and R.C. Mehrotra, Phosphorus Sulfur, 15, 99 (1983); https://doi.org/10.1080/03086648308073283.
- J. Pitawala, J. Scheers, P. Jacobsson and A. Matic, J. Phys. Chem. B, 117, 8172 (2013); https://doi.org/10.1021/jp4042974.
- S. Lee, J.H. Park, J.K. Lee and J. Kang, Chem. Commun., 1698 (2001); https://doi.org/10.1039/b104967b.
- T. Espinosa, J. Sanes and M.-D. Bermúdez, Coat, 5, 39 (2015); https://doi.org/10.3390/coatings5010039.
- A.E. Jiménez, A. Rossi, M. Fantauzzi, T. Espinosa, J. Arias-Pardilla, G. Martínez-Nicolás and M.A.-D. Bermúdez, ACS Appl. Mater. Interfaces, 7, 10337 (2015); https://doi.org/10.1021/acsami.5b01167.
- M.M. Crutchfield, C.H. Dungan, J.H. Letcher, V. Mark and J.R. Van Wazer, eds.: M. Grayson and E.J. Griffith, P31 Nuclear Magnetic Resonance, John Wiley & Sons, New York, vol. 5, 492 (1967).
- N.B. Colthup, L.H. Daly and S.E. Wiberley, Introduction to Infrared and Raman Spectroscopy, Academic Press: New York (1964).
- K. Uwai, H. Sato, N. Kazakami, H. Matsuzaki and M. Takeshita, Arkivoc, 211 (2003); https://doi.org/10.3998/ark.5550190.0004.821.
- M.A. Ogunwale, Y. Chen, W.S. Theis, M.H. Nantz, D.J. Conklin and X.-A. Fu, Anal. Methods, 9, 4261 (2017); https://doi.org/10.1039/C7AY00501F.
- J. Graton, M. Berthelot, J.-F. Gal, S. Girard, C. Laurence, J. Lebreton, J.-Y. Le Questel, P.-C. Maria and P. Nauš, J. Am. Chem. Soc., 124, 10552 (2002); https://doi.org/10.1021/ja017770a.
- Slayt (1%) involves 2-phenoxyethanol 1%, N,N-bis(3-aminopropyl) dodecylamine 1.5%, alkyl dimethylbenzylammonium chloride and didecyldimethylammonium chloride 2%, propanol-2 1%, lipase, copolymer of N,N-1,6-hexanediylbis(N-cyanoguanidine) with 1,6- hexadiamine hydrochloride 1% and protease http://dezr.ru/preparat/slayt (accessed July 27, 2019).
References
E. Fattorusso and O. Taglialatela-Scafati, Modern Alkaloids, Structure, Isolation, Synthesis and Biology, Wiley-VCH, Weinheim (2008).
J.W. Gorrod and P. Jacob, Analytical Determination of Nicotine and Related Compounds and their Metabolites, Elsevier Science B.V. (1999).
J. Zempleni, J.W. Suttie, J.F. Gregory and P.J. Stover, Handbook of Vitamins, CRC Press, edn 5 pp 605 (2013).
R.Y. Morjan, A.M. Mkadmh, I. Beadham, A.A. Elmanama, M.R. Mattar, J. Raftery, R.G. Pritchard, A.M. Awadallah and J.M. Gardiner, Bioorg. Med. Chem. Lett., 24, 5796 (2014); https://doi.org/10.1016/j.bmcl.2014.10.029.
N.B. Patel, A.C. Purohit, D.P. Rajani, R. Moo-Puc and G. Rivera, Eur. J. Med. Chem., 62, 677 (2013); https://doi.org/10.1016/j.ejmech.2012.12.055.
Z.H. Chohan, A. Rauf, S. Noreen, A. Scozzafava and C.T. Supuran, J. Enzyme Inhib. Med. Chem., 17, 101 (2002); https://doi.org/10.1080/14756360290024209.
V. Judge, B. Narasimhan, M. Ahuja, D. Sriram, P. Yogeeswari, E. De Clercq, C. Pannecouque and J. Balzarini, Med. Chem., 9, 53 (2012); https://doi.org/10.2174/1573406411309010053.
P.T. Gandhi, T.N. Athmaram and G.R. Arunkumar, Bioorg. Med. Chem., 24, 1637 (2016); https://doi.org/10.1016/j.bmc.2016.02.035.
Y.-H. Ye, L. Ma, Z.-C. Dai, Y. Xiao, Y.-Y. Zhang, D.-D. Li, J.-X. Wang and H.-L. Zhu, J. Agric. Food Chem., 62, 4063 (2014); https://doi.org/10.1021/jf405437k.
M. Adamiec, J. Adamus, I. Ciebiada, A. Denys and J. Gebicki, Pharmacol. Rep., 58, 246 (2006).
P.S. Erickson, M.R. Murphy and J.H. Clark, J. Dairy Sci., 75, 1078 (1992); https://doi.org/10.3168/jds.S0022-0302(92)77852-7.
R.A. Akhmadishina, E.V. Kuznetsova, G.R. Sadrieva, L.R. Sabirzyanova, I.S. Nizamov, G.R. Akhmedova, I.D. Nizamov and T.I. Abdullin, Peptides, 99, 179 (2018); https://doi.org/10.1016/j.peptides.2017.10.002.
T. Dang, I.S. Nizamov, R.Z. Salikhov, L.R. Sabirzyanova, V.V. Vorobev, T.I. Burganova, M.M. Shaidoullina, E.S. Batyeva, R.A. Cherkasov and T.I. Abdullin, Bioorg. Med. Chem., 27, 100 (2019); https://doi.org/10.1016/j.bmc.2018.11.017.
I.S. Nizamov, G.G. Shumatbaev, I.D. Nizamov, R.Z. Salikhov, Ye.N. Nikitin, M.P. Shulaeva, O.K. Pozdeev, E.S. Batyeva and R.A. Cherkasov, Chem. Select, 4, 1681 (2019); https://doi.org/10.1002/slct.201802783.
I.S. Nizamov, A.V. Sofronov, L.A. Al’metkina, R.Z. Musin and R.A. Cherkasov, Russ. J. Gen. Chem., 80, 1722 (2010); https://doi.org/10.1134/S1070363210080268.
I.S. Nizamov, G.T. Gabdullina, D.A. Terenzhev, A.R. Nurmukhametov, I.D. Nizamov and R.A. Cherkasov, Phosphorus Sulfur Silicon Relat. Elem., 189, 1354 (2014); https://doi.org/10.1080/10426507.2013.860531.
H.P.S. Chauhan, C.P. Bhasin, G. Srivastava and R.C. Mehrotra, Phosphorus Sulfur, 15, 99 (1983); https://doi.org/10.1080/03086648308073283.
J. Pitawala, J. Scheers, P. Jacobsson and A. Matic, J. Phys. Chem. B, 117, 8172 (2013); https://doi.org/10.1021/jp4042974.
S. Lee, J.H. Park, J.K. Lee and J. Kang, Chem. Commun., 1698 (2001); https://doi.org/10.1039/b104967b.
T. Espinosa, J. Sanes and M.-D. Bermúdez, Coat, 5, 39 (2015); https://doi.org/10.3390/coatings5010039.
A.E. Jiménez, A. Rossi, M. Fantauzzi, T. Espinosa, J. Arias-Pardilla, G. Martínez-Nicolás and M.A.-D. Bermúdez, ACS Appl. Mater. Interfaces, 7, 10337 (2015); https://doi.org/10.1021/acsami.5b01167.
M.M. Crutchfield, C.H. Dungan, J.H. Letcher, V. Mark and J.R. Van Wazer, eds.: M. Grayson and E.J. Griffith, P31 Nuclear Magnetic Resonance, John Wiley & Sons, New York, vol. 5, 492 (1967).
N.B. Colthup, L.H. Daly and S.E. Wiberley, Introduction to Infrared and Raman Spectroscopy, Academic Press: New York (1964).
K. Uwai, H. Sato, N. Kazakami, H. Matsuzaki and M. Takeshita, Arkivoc, 211 (2003); https://doi.org/10.3998/ark.5550190.0004.821.
M.A. Ogunwale, Y. Chen, W.S. Theis, M.H. Nantz, D.J. Conklin and X.-A. Fu, Anal. Methods, 9, 4261 (2017); https://doi.org/10.1039/C7AY00501F.
J. Graton, M. Berthelot, J.-F. Gal, S. Girard, C. Laurence, J. Lebreton, J.-Y. Le Questel, P.-C. Maria and P. Nauš, J. Am. Chem. Soc., 124, 10552 (2002); https://doi.org/10.1021/ja017770a.
Slayt (1%) involves 2-phenoxyethanol 1%, N,N-bis(3-aminopropyl) dodecylamine 1.5%, alkyl dimethylbenzylammonium chloride and didecyldimethylammonium chloride 2%, propanol-2 1%, lipase, copolymer of N,N-1,6-hexanediylbis(N-cyanoguanidine) with 1,6- hexadiamine hydrochloride 1% and protease http://dezr.ru/preparat/slayt (accessed July 27, 2019).