Copyright (c) 2020 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Ultrasonic and Optical Studies of Binary Mixtures of Ethanol with Diisopropyl Ether, Cyclohexane or n-Alkanes (C6-C9) from 298.15 to 318.15 K
Corresponding Author(s) : Manju Rani
Asian Journal of Chemistry,
Vol. 32 No. 2 (2020): Vol 32 Issue 2
Abstract
Ultrasonic speeds (u) and refractive indices (n) of the binary liquid mixtures of ethanol with diisopropyl ether (DIPE) or cyclohexane or n-alkane (C6-C9) were experimentally measured from 298.15 to 318.15 K over entire composition range. Using these measurements deviation in ultrasonic speed (Δu), deviation in refractive index (Δn), excess intermolecular free length (LfE) and excess isentropic compressibility (KsE) were calculated and fitted with Redlich-Kister equation. The Δu values are negative for all binary mixture and magnitude of negative deviation for binary mixture of ethanol and n-alkane decreases as chain length increases. At equimolar composition, KsE follows the order: n-hexane > n-heptane > n-otcane > n-nonane > diisopropyl ether > cyclohexane. Experimental results were analyzed to understand the various molecular interactions present in the binary mixtures. The u values for all binary liquid solutions were also correlated using different empirical correlations such as Nomoto, impedence dependence relation and van Dael ideal mixing relation. The u for binary liquid mixtures were also computed theoretically using Schaaff′s collision factor theory. Free length theory was used to compute inter-molecular free length (LfE). Various correlations e.g., Arago-Biot (A-B), Gladstone-Dale (G-D), Heller (H), Lorentz-Lorentz (L-L), Eyring-John (E-J), Newton (Nw) and Weiner (W) were used for calculating refractive indices of selected systems theoretically.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Canosa, A. Rodríguez and J. Tojo, Fluid Phase Equilib., 156, 57 (1999); https://doi.org/10.1016/S0378-3812(99)00032-1.
- S. Gahlyan, M. Rani and S. Maken, J. Mol. Liq., 199, 42 (2014); https://doi.org/10.1016/j.molliq.2014.08.011.
- X. Zhou, Y. Chen, C. Wang, J. Guo and C. Wen, J. Chem. Thermodyn., 87, 13 (2015); https://doi.org/10.1016/j.jct.2015.03.003.
- E. Catizzone, G. Bonura, M. Migliori, F. Frusteri and G. Giordano, Molecules, 23, 31 (2018); https://doi.org/10.3390/molecules23010031.
- S. Gahlyan, M. Rani, S. Maken, H. Kwon, K. Tak and I. Moon, J. Ind. Eng. Chem., 23, 299 (2015); https://doi.org/10.1016/j.jiec.2014.08.032.
- R. Sharma, R.C. Thakur and B. Saini, Asian J. Chem., 28, 2331 (2016); https://doi.org/10.14233/ajchem.2016.20010.
- R. Mehra, J. Chem. Sci., 115, 147 (2003); https://doi.org/10.1007/BF02716982.
- J.C. Reis, I.M. Lampreia, A.F. Santos, M.L. Moita and G. Douhéret, Chemphyschem., 11, 3722 (2010); https://doi.org/10.1002/cphc.201000566.
- A. Riddick, W. Bunger and T. Sakano Organic Solvents: Physical Properties and Methods of Purification, Wiley, New York, edn 4 (1986).
- Z. Atik and K. Lourddani, J. Solution Chem., 35, 1453 (2006); https://doi.org/10.1007/s10953-006-9072-7.
- H.-W. Chen and C.-H. Tu, J. Chem. Eng. Data, 51, 261 (2006); https://doi.org/10.1021/je050367p.
- A. Estrada-Baltazar, G.A. Iglesias-Silva and C. Caballero-Cerón, J. Chem. Eng. Data, 58, 3351 (2013); https://doi.org/10.1021/je4004806.
- S. Gahlyan, S. Verma, M. Rani and S. Maken, J. Mol. Liq., 244, 233 (2017); https://doi.org/10.1016/j.molliq.2017.09.015.
- E. Jiménez, H. Casas, L. Segade and C. Franjo, J. Chem. Eng. Data, 45, 862 (2000); https://doi.org/10.1021/je000060k.
- R. Tôrres, M.I. Ortolan and P. Volpe, J. Chem. Thermodyn., 40, 442 (2008); https://doi.org/10.1016/j.jct.2007.09.007.
- J. Ortega, J. Chem. Eng. Data, 27, 312 (1982); https://doi.org/10.1021/je00029a024.
- E.B. Freyer, J. Hubbard and D.H. Andrews, J. Am. Chem. Soc., 51, 759 (1929); https://doi.org/10.1021/ja01378a014.
- I.H. Peng and C.-H. Tu, J. Chem. Eng. Data, 47, 1457 (2002); https://doi.org/10.1021/je020077y.
- S. Dash, S. Pradhan, B. Dalai, L. Moharana and B. Swain, Phys. Chem. Liq., 50, 735 (2012); https://doi.org/10.1080/00319104.2012.713554.
- E. Aicart, G. Tardajos and M. Diaz Pena, J. Chem. Eng. Data, 25, 140 (1980); https://doi.org/10.1021/je60085a007.
- H. Shekaari, M.T. Zafarani-Moattar and N.J. Behrooz, J. Chem. Thermodyn., 86, 188 (2015); https://doi.org/10.1016/j.jct.2015.03.004.
- A. Aucejo, M.C. Burguet, R. Munoz and J.L. Marques, J. Chem. Eng. Data, 40, 141 (1995); https://doi.org/10.1021/je00017a032.
- E. Alonso, H. Guerrero, D. Montaño, C. Lafuente and H. Artigas, Thermochim. Acta, 525, 71 (2011); https://doi.org/10.1016/j.tca.2011.07.023.
- T.M. Aminabhavi and V.B. Patil, J. Chem. Eng. Data, 42, 641 (1997); https://doi.org/10.1021/je960382h.
- M. (Ali) Basu, T. Samanta and D. Das, J. Chem. Thermodyn., 57, 335 (2013); https://doi.org/10.1016/j.jct.2012.09.015.
- T.M. Aminabhavi, V.B. Patil, M.I. Aralaguppi and H.T.S. Phayde, J. Chem. Eng. Data, 41, 521 (1996); https://doi.org/10.1021/je950279c.
- S. Kouris and C. Panayiotou, J. Chem. Eng. Data, 34, 200 (1989); https://doi.org/10.1021/je00056a016.
- G.P. Dubey and M. Sharma, J. Mol. Liq., 142, 124 (2008); https://doi.org/10.1016/j.molliq.2008.05.013.
- G.P. Dubey and M. Sharma, J. Chem. Thermodyn., 40, 991 (2008); https://doi.org/10.1016/j.jct.2008.02.005.
- B. Orge, A. Rodríguez, J.M. Canosa, G. Marino, M. Iglesias and J. Tojo, J. Chem. Eng. Data, 44, 1041 (1999); https://doi.org/10.1021/je9900676.
- F.X. Feitosa, A.C.R. Caetano, T.B. Cidade and H.B. de Sant’Ana, J. Chem. Eng. Data, 54, 2957 (2009); https://doi.org/10.1021/je800925v.
- A. Gayol, M. Iglesias, J.M. Goenaga, R.G. Concha and J.M. Resa, J. Mol. Liq., 135, 105 (2007); https://doi.org/10.1016/j.molliq.2006.11.012.
- T.M. Aminabhavi and G. Bindu, J. Chem. Eng. Data, 39, 529 (1994); https://doi.org/10.1021/je00015a029.
- D.C. Landaverde-Cortes, G.A. Iglesias-Silva, M. Ramos-Estrada and K.R. Hall, J. Chem. Eng. Data, 53, 288 (2008); https://doi.org/10.1021/je700428f.
- O. Redlich and A.T. Kister, Ind. Eng. Chem., 40, 345 (1948); https://doi.org/10.1021/ie50458a036.
- S. Gahlyan, M. Rani and S. Maken, J. Mol. Liq., 219, 1107 (2016); https://doi.org/10.1016/j.molliq.2016.04.011.
References
J. Canosa, A. Rodríguez and J. Tojo, Fluid Phase Equilib., 156, 57 (1999); https://doi.org/10.1016/S0378-3812(99)00032-1.
S. Gahlyan, M. Rani and S. Maken, J. Mol. Liq., 199, 42 (2014); https://doi.org/10.1016/j.molliq.2014.08.011.
X. Zhou, Y. Chen, C. Wang, J. Guo and C. Wen, J. Chem. Thermodyn., 87, 13 (2015); https://doi.org/10.1016/j.jct.2015.03.003.
E. Catizzone, G. Bonura, M. Migliori, F. Frusteri and G. Giordano, Molecules, 23, 31 (2018); https://doi.org/10.3390/molecules23010031.
S. Gahlyan, M. Rani, S. Maken, H. Kwon, K. Tak and I. Moon, J. Ind. Eng. Chem., 23, 299 (2015); https://doi.org/10.1016/j.jiec.2014.08.032.
R. Sharma, R.C. Thakur and B. Saini, Asian J. Chem., 28, 2331 (2016); https://doi.org/10.14233/ajchem.2016.20010.
R. Mehra, J. Chem. Sci., 115, 147 (2003); https://doi.org/10.1007/BF02716982.
J.C. Reis, I.M. Lampreia, A.F. Santos, M.L. Moita and G. Douhéret, Chemphyschem., 11, 3722 (2010); https://doi.org/10.1002/cphc.201000566.
A. Riddick, W. Bunger and T. Sakano Organic Solvents: Physical Properties and Methods of Purification, Wiley, New York, edn 4 (1986).
Z. Atik and K. Lourddani, J. Solution Chem., 35, 1453 (2006); https://doi.org/10.1007/s10953-006-9072-7.
H.-W. Chen and C.-H. Tu, J. Chem. Eng. Data, 51, 261 (2006); https://doi.org/10.1021/je050367p.
A. Estrada-Baltazar, G.A. Iglesias-Silva and C. Caballero-Cerón, J. Chem. Eng. Data, 58, 3351 (2013); https://doi.org/10.1021/je4004806.
S. Gahlyan, S. Verma, M. Rani and S. Maken, J. Mol. Liq., 244, 233 (2017); https://doi.org/10.1016/j.molliq.2017.09.015.
E. Jiménez, H. Casas, L. Segade and C. Franjo, J. Chem. Eng. Data, 45, 862 (2000); https://doi.org/10.1021/je000060k.
R. Tôrres, M.I. Ortolan and P. Volpe, J. Chem. Thermodyn., 40, 442 (2008); https://doi.org/10.1016/j.jct.2007.09.007.
J. Ortega, J. Chem. Eng. Data, 27, 312 (1982); https://doi.org/10.1021/je00029a024.
E.B. Freyer, J. Hubbard and D.H. Andrews, J. Am. Chem. Soc., 51, 759 (1929); https://doi.org/10.1021/ja01378a014.
I.H. Peng and C.-H. Tu, J. Chem. Eng. Data, 47, 1457 (2002); https://doi.org/10.1021/je020077y.
S. Dash, S. Pradhan, B. Dalai, L. Moharana and B. Swain, Phys. Chem. Liq., 50, 735 (2012); https://doi.org/10.1080/00319104.2012.713554.
E. Aicart, G. Tardajos and M. Diaz Pena, J. Chem. Eng. Data, 25, 140 (1980); https://doi.org/10.1021/je60085a007.
H. Shekaari, M.T. Zafarani-Moattar and N.J. Behrooz, J. Chem. Thermodyn., 86, 188 (2015); https://doi.org/10.1016/j.jct.2015.03.004.
A. Aucejo, M.C. Burguet, R. Munoz and J.L. Marques, J. Chem. Eng. Data, 40, 141 (1995); https://doi.org/10.1021/je00017a032.
E. Alonso, H. Guerrero, D. Montaño, C. Lafuente and H. Artigas, Thermochim. Acta, 525, 71 (2011); https://doi.org/10.1016/j.tca.2011.07.023.
T.M. Aminabhavi and V.B. Patil, J. Chem. Eng. Data, 42, 641 (1997); https://doi.org/10.1021/je960382h.
M. (Ali) Basu, T. Samanta and D. Das, J. Chem. Thermodyn., 57, 335 (2013); https://doi.org/10.1016/j.jct.2012.09.015.
T.M. Aminabhavi, V.B. Patil, M.I. Aralaguppi and H.T.S. Phayde, J. Chem. Eng. Data, 41, 521 (1996); https://doi.org/10.1021/je950279c.
S. Kouris and C. Panayiotou, J. Chem. Eng. Data, 34, 200 (1989); https://doi.org/10.1021/je00056a016.
G.P. Dubey and M. Sharma, J. Mol. Liq., 142, 124 (2008); https://doi.org/10.1016/j.molliq.2008.05.013.
G.P. Dubey and M. Sharma, J. Chem. Thermodyn., 40, 991 (2008); https://doi.org/10.1016/j.jct.2008.02.005.
B. Orge, A. Rodríguez, J.M. Canosa, G. Marino, M. Iglesias and J. Tojo, J. Chem. Eng. Data, 44, 1041 (1999); https://doi.org/10.1021/je9900676.
F.X. Feitosa, A.C.R. Caetano, T.B. Cidade and H.B. de Sant’Ana, J. Chem. Eng. Data, 54, 2957 (2009); https://doi.org/10.1021/je800925v.
A. Gayol, M. Iglesias, J.M. Goenaga, R.G. Concha and J.M. Resa, J. Mol. Liq., 135, 105 (2007); https://doi.org/10.1016/j.molliq.2006.11.012.
T.M. Aminabhavi and G. Bindu, J. Chem. Eng. Data, 39, 529 (1994); https://doi.org/10.1021/je00015a029.
D.C. Landaverde-Cortes, G.A. Iglesias-Silva, M. Ramos-Estrada and K.R. Hall, J. Chem. Eng. Data, 53, 288 (2008); https://doi.org/10.1021/je700428f.
O. Redlich and A.T. Kister, Ind. Eng. Chem., 40, 345 (1948); https://doi.org/10.1021/ie50458a036.
S. Gahlyan, M. Rani and S. Maken, J. Mol. Liq., 219, 1107 (2016); https://doi.org/10.1016/j.molliq.2016.04.011.