Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Transesterification of Algae Oil using K2CO3/ZnO Heterogeneous Base Catalyst
Corresponding Author(s) : Y.V.V. Satyanarayanamurthy
Asian Journal of Chemistry,
Vol. 31 No. 5 (2019): Vol 31 Issue 5
Abstract
The objective of the present work was to develop a heterogeneous base catalyst K2CO3/ZnO for transesterification of algae oil. This catalyst was prepared by wet impregnation method calcinated at high temperature of 600 °C. The catalyst was characterized by X-ray diffraction technique. The crude algae oil was degummed and its free fatty acid was reduced to 2 % by methanol treatment. Methanol was used to convert triglycerides to biodiesel using K2CO3/ZnO. The doping of 30 % K2CO3 on ZnO calcined at 600 °C was studied on biodiesel yield. The reaction parameters such as temperature, stirring rate, amount of catalyst, methanol to oil molar ratio on the yield of fatty acid methyl ester were investigated. Highest yield was obtained for 7 % catalyst, 9:1 methanol to molar ratio at 80 °C for 30 % K2CO3/ZnO. This study proved that the catalyst loading less than 5 % was unsuccessful in biodiesel yield. The physio-chemical properties of the produced algae biodiesel was determined as per ASTM test procedures.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Brito, M.E. Borges, R. Arvelo, F. Garcia, M.C. Diaz and N. Otero, Int. J. Chem. React. Eng., 5, A104 (2007); https://doi.org/10.2202/1542-6580.1548.
- Y.-Y. Wang, T.H. Ðãng, B.-H. Chen and D.-J. Lee, Ind. Eng. Chem. Res., 51, 9959 (2012); https://doi.org/10.1021/ie202782q.
- S. Damyanova, B. Pawelec, K. Arishtirova, M.V.M. Huerta and J.L.G. Fierro, Appl. Catal. A Gen., 337, 86 (2008); https://doi.org/10.1016/j.apcata.2007.12.005.
- A.A. Refaat, Int. J. Environ. Sci. Technol., 8, 203 (2011); https://doi.org/10.1007/BF03326210.
- I. Chorkendorff and J.W. Niemantsverdriet, Concepts of Modern Catalysis and Kinetics, John Wiley & Sons (2017).
- T.F. Dossin, M.-F. Reyniers, R.J. Berger and G.B. Marin, Appl. Catal. B, 67, 136 (2006); https://doi.org/10.1016/j.apcatb.2006.04.008.
- H.-J. Kim, B.-S. Kang, M.-J. Kim, Y.M. Park, D.-K. Kim, J.-S. Lee and K.-Y. Lee, Catal. Today, 93-95, 315 (2004); https://doi.org/10.1016/j.cattod.2004.06.007.
- X. Liu, H. He, Y. Wang, S. Zhu and X. Piao, Fuel, 87, 216 (2008); https://doi.org/10.1016/j.fuel.2007.04.013.
- Y.V.V.S. Murthy, M.R.S. Satyanarayana, R.S. Resapu and R. Jogi, Int. J. Chem. Reactor Eng., 13, 395 (2015); https://doi.org/10.1515/ijcre-2015-0004.
- M.H. Jellinek and I. Fankuchen, Ind. Eng. Chem., 37, 158 (1945); https://doi.org/10.1021/ie50422a012.
- S.K. Sinha, A. Gupta and R. Bharalee, Biofuels, 7, 69 (2016) https://doi.org/10.1080/17597269.2015.1118781.
- Sousa, I.L. Lucena and F.A.N. Fernandes, Fuel Process. Technol., 91, 194 (2010); https://doi.org/10.1016/j.fuproc.2009.09.016.
- R. Saha and V.V. Goud, Biomass Conv. Bioref., 5, 195 (2015); https://doi.org/10.1007/s13399-014-0133-7.
References
A. Brito, M.E. Borges, R. Arvelo, F. Garcia, M.C. Diaz and N. Otero, Int. J. Chem. React. Eng., 5, A104 (2007); https://doi.org/10.2202/1542-6580.1548.
Y.-Y. Wang, T.H. Ðãng, B.-H. Chen and D.-J. Lee, Ind. Eng. Chem. Res., 51, 9959 (2012); https://doi.org/10.1021/ie202782q.
S. Damyanova, B. Pawelec, K. Arishtirova, M.V.M. Huerta and J.L.G. Fierro, Appl. Catal. A Gen., 337, 86 (2008); https://doi.org/10.1016/j.apcata.2007.12.005.
A.A. Refaat, Int. J. Environ. Sci. Technol., 8, 203 (2011); https://doi.org/10.1007/BF03326210.
I. Chorkendorff and J.W. Niemantsverdriet, Concepts of Modern Catalysis and Kinetics, John Wiley & Sons (2017).
T.F. Dossin, M.-F. Reyniers, R.J. Berger and G.B. Marin, Appl. Catal. B, 67, 136 (2006); https://doi.org/10.1016/j.apcatb.2006.04.008.
H.-J. Kim, B.-S. Kang, M.-J. Kim, Y.M. Park, D.-K. Kim, J.-S. Lee and K.-Y. Lee, Catal. Today, 93-95, 315 (2004); https://doi.org/10.1016/j.cattod.2004.06.007.
X. Liu, H. He, Y. Wang, S. Zhu and X. Piao, Fuel, 87, 216 (2008); https://doi.org/10.1016/j.fuel.2007.04.013.
Y.V.V.S. Murthy, M.R.S. Satyanarayana, R.S. Resapu and R. Jogi, Int. J. Chem. Reactor Eng., 13, 395 (2015); https://doi.org/10.1515/ijcre-2015-0004.
M.H. Jellinek and I. Fankuchen, Ind. Eng. Chem., 37, 158 (1945); https://doi.org/10.1021/ie50422a012.
S.K. Sinha, A. Gupta and R. Bharalee, Biofuels, 7, 69 (2016) https://doi.org/10.1080/17597269.2015.1118781.
Sousa, I.L. Lucena and F.A.N. Fernandes, Fuel Process. Technol., 91, 194 (2010); https://doi.org/10.1016/j.fuproc.2009.09.016.
R. Saha and V.V. Goud, Biomass Conv. Bioref., 5, 195 (2015); https://doi.org/10.1007/s13399-014-0133-7.