Copyright (c) 2020 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
4-{[4-(Dimethylamino)benzylidene]amino}-5-methyl-4H-1,2,4-triazole-3-thiol as Corrosion Inhibitor for 316 Stainless Steel in 2.5 M Sulphuric Acid: An Experimental and Theoretical Investigation
Corresponding Author(s) : P.A. Suchetan
Asian Journal of Chemistry,
Vol. 32 No. 5 (2020): Vol 32 Issue 5
Abstract
The corrosion inhibition competence of 4-{[4-(dimethylamino)benzylidene]amino}-5-methyl-4H-1,2,4-triazole-3-thiol (DBTT) on 316 stainless steel (316 SS) in 2.5 M H2SO4 was studied using various electrochemical as well as weight-loss measurements. The alloy surface was examined by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). Concentration effect on inhibition efficiency was investigated by varying concentration from 5 to 2000 ppm in the temperature range 30-60 °C. Results indicated mixed-type inhibitory action of DBTT. The efficiency increased with the raise in concentration of DBTT and temperature, reaching a highest of 92.4 % at 60 °C. Langmuir adsorption isotherm is obeyed. Calculation of different thermodynamic factors suggests that the adsorption is via both physisorption and chemisorption. In addition to these, several global reactivity parameters were calculated using DFT method at B3LYP/6-311++(d,p) basis set. Theoretical calculations are in good concurrence with the experimental results.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D.A. Jones, Principles and Prevention of Corrosion, Pearson Education Limited: Essex, p. 516 (2014).
- N. Goudarzi, M. Peikari, M.R. Zahiri and H.R. Mousavi, Arch. Metall. Mater., 57, 845 (2012); https://doi.org/10.2478/v10172-012-0044-1
- W.-C. Chiang, I.-S. Tseng, P. Møller, L.R. Hilbert, T. Tolker-Nielsen and J.-K. Wu, Mater. Chem. Phys., 119, 123 (2010); https://doi.org/10.1016/j.matchemphys.2009.08.035
- T. Sourisseau, E. Chauveau and B. Baroux, Corros. Sci., 47, 1097 (2005); https://doi.org/10.1016/j.corsci.2004.05.024
- M.B. Gonzalez and S.B. Saidman, Corros. Sci., 53, 276 (2011); https://doi.org/10.1016/j.corsci.2010.09.021
- P.A. Kilmartin, L. Trier and G.A. Wright, Synth. Met., 131, 99 (2002); https://doi.org/10.1016/S0379-6779(02)00178-9
- M. Urgen and A.F. Cakir, Corros. Sci., 32, 835 (1991); https://doi.org/10.1016/0010-938X(91)90028-N
- H.A. El Dahan, J. Mater. Sci., 34, 851 (1999); https://doi.org/10.1023/A:1004545501971
- L. Naravez, E. Cano and D.M. Bastidas, J. Appl. Electrochem., 35, 499 (2005); https://doi.org/10.1007/s10800-005-0291-1
- A. Galal, N.F. Atta and M.H.S. Al-Hassan, Mater. Chem. Phys., 89, 38 (2005); https://doi.org/10.1016/j.matchemphys.2004.08.019
- A.S. Fouda, M.A. Diab and S. Fathy, Int. J. Electrochem. Sci., 12, 347 (2017); https://doi.org/10.20964/2017.01.60
- L.T. Popoola, Corros. Rev., 37, 71 (2019); https://doi.org/10.1515/corrrev-2018-0058
- M. Yadav, T.K. Sarkar and T. Purkait, J. Mol. Liq., 212, 731 (2015); https://doi.org/10.1016/j.molliq.2015.10.021
- N. Soltani, N. Tavakkoli, M. Khayatkashani, M.R. Jalali and A. Mosavizade, Corros. Sci., 62, 122 (2012); https://doi.org/10.1016/j.corsci.2012.05.003
- O. Sanni, A.P.I. Popoola and O.S.I. Fayomi, Results Phys., 9, 225 (2018); https://doi.org/10.1016/j.rinp.2018.02.001
- Z. Tao, S. Zhang, W. Li and B. Hou, Corros. Sci., 51, 2588 (2009); https://doi.org/10.1016/j.corsci.2009.06.042
- L. Wang, M. Zhu, F. Yang and C. Gao, Int. J. Corros., 2012, 1 (2012); https://doi.org/10.1155/2012/573964
- A.A. Al-Sarawy, A.S. Fouda and W.A.S. El-Dein, Desalination, 229, 279 (2008); https://doi.org/10.1016/j.desal.2007.09.013
- K.F. Khaled, Electrochim. Acta, 48, 2493 (2003); https://doi.org/10.1016/S0013-4686(03)00291-3
- M. Yadav, S. Yadav and A. Yadav, J. Chem. Pharm. Res., 3/6, 576 (2011).
- N.F. Atta, A.M. Fekry and H.M. Hassaneen, Int. J. Hydrogen Energy, 36, 6462 (2011); https://doi.org/10.1016/j.ijhydene.2011.02.134
- N. Goudarzi and H. Farahani, Anti-Corros. Methods Mater., 61, 20 (2013); https://doi.org/10.1108/ACMM-11-2012-1223
- R.R. Moreira, T.F. Soares and J. Ribeiro, Adv. Chem. Eng. Sci., 4, 503 (2014); https://doi.org/10.4236/aces.2014.44052
- M. Abdallah, M.M. Salem, B.A.A.L. Jahdaly, M.I. Awad, E. Helal and A.S. Fouda, Int. J. Electrochem. Sci., 12, 4543 (2017); https://doi.org/10.20964/2017.05.35
- D. Gopi, K.M. Govindaraju and L. Kavitha, J. Appl. Electrochem., 40, 1349 (2010); https://doi.org/10.1007/s10800-010-0092-z
- Z. Zhang, L. Ruan, X. Huang, Y. Lyu, S. Zhang, W. Shang and X. Li, Int. J. Electrochem. Sci., 12, 576 (2017); https://doi.org/10.20964/2017.01.37
- S. John, K.M. Ali and A. Joseph, Bull. Mater. Sci., 34, 1245 (2011); https://doi.org/10.1007/s12034-011-0234-x
- M. Prajila and A. Joseph, J. Mol. Liq., 241, 1 (2017); https://doi.org/10.1016/j.molliq.2017.05.136
- N. Shet, R. Nazareth and P.A. Suchetan, Chem. Data Coll., 20, 100209 (2019); https://doi.org/10.1016/j.cdc.2019.100209
- A.D. Becke, J. Chem. Phys., 98, 5648 (1993); https://doi.org/10.1063/1.464913
- C. Lee, W. Yang and R.G. Parr, Phys. Rev. B Condens. Matter, 37, 785 (1988); https://doi.org/10.1103/PhysRevB.37.785
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, O.Yazyev, R.E. Stratmann, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski and D.J. Fox, Gaussian, Inc., Wallingford CT, Gaussian 09, Revision B.01 (2010).
- R. Dennington, T. Keith and J. Millam, Semichem Inc., Shawnee Mission KS, GaussView, Version 5 (2009).
- M.G. Fontana, Corrosion Engineering, Tata McGraw Hill: New Delhi, p. 173 (2005).
- A.K. Singh and M.A. Quraishi, Int. J. Electrochem. Sci., 7, 3222 (2012).
- X. Zheng, M. Gong, Q. Li and L. Guo, Sci. Rep., 8, 9140 (2018); https://doi.org/10.1038/s41598-018-27257-9
- B.S. Sanatkumar, J. Nayak and A.N. Shetty, Chem. Sci. J., 2011, 37 (2011).
- F.M. Mahgoub, B.A. Abdel-Nabey and Y.A. El-Samadisy, Mater. Chem. Phys., 120, 104 (2010); https://doi.org/10.1016/j.matchemphys.2009.10.028
- F. Bensajjay, S. Alehyen, M. El Achouri and S. Kertit, Anti-Corros. Methods Mater., 50, 402 (2003); https://doi.org/10.1108/00035590310501558
- J. Fu, J. Pan, Z. Liu, S. Li and Y. Wang, Int. J. Electrochem. Sci., 6, 2072 (2011).
- N. Dinodi and A.N. Shetty, Corros. Sci., 85, 411 (2014); https://doi.org/10.1016/j.corsci.2014.04.052
- A.A. Atia and M.M. Saleh, J. Appl. Electrochem., 33, 171 (2003); https://doi.org/10.1023/A:1024083117949
- Y.H. Ahmad and W.M.I. Hassan, Int. J. Electrochem. Sci., 7, 12456 (2012).
- P. Kumari, P. Shetty and S.A. Rao, Int. J. Corros., 2014, 1 (2014); https://doi.org/10.1155/2014/256424
- E.A. Noor, Mater. Chem. Phys., 114, 533 (2009); https://doi.org/10.1016/j.matchemphys.2008.09.065
- M. Bouklah, N. Benchat, B. Hammouti, A. Aouniti and S. Kertit, Mater. Lett., 60, 1901 (2006); https://doi.org/10.1016/j.matlet.2005.12.051
- K.C. Emregul and M. Hayvali, Corros. Sci., 48, 797 (2006); https://doi.org/10.1016/j.corsci.2005.03.001
- H. Jafari, I. Danaee, H. Eskandari and M. RashvandAvei, J. Mater. Sci. Technol., 30, 239 (2014); https://doi.org/10.1016/j.jmst.2014.01.003
- T. Poornima, J. Nayak and A.N. Shetty, J. Appl. Electrochem., 41, 223 (2011); https://doi.org/10.1007/s10800-010-0227-2
- S.V. Lamaka, M.L. Zheludkevich, K.A. Yasakau, M.F. Montemor and M.G.S. Ferreira, Electrochim. Acta, 52, 7231 (2007); https://doi.org/10.1016/j.electacta.2007.05.058
- A. Pardo, M.C. Merino, A.E. Coy, F. Viejo, R. Arrabal and E. Matykina, Corros. Sci., 50, 780 (2008); https://doi.org/10.1016/j.corsci.2007.11.004
- N. Labjar, M. Lebrini, F. Bentiss, N. Chihib, S.E. Hajjaji and C. Jama, Mater. Chem. Phys., 119, 330 (2010); https://doi.org/10.1016/j.matchemphys.2009.09.006
- H.H. Hassan, E. Abdelghani and M.A. Amin, Electrochim. Acta, 52, 6359 (2007); https://doi.org/10.1016/j.electacta.2007.04.046
- M. Behpour, S.M. Ghoreishi, N. Mohammadi and M. Salavati-Niasari, Corros. Sci., 53, 3380 (2011); https://doi.org/10.1016/j.corsci.2011.06.017
- T. Poornima, J. Nayak and A.N. Shetty, J. Metall., 2012, 1 (2012); https://doi.org/10.1155/2012/723687
- P.C. Okafor, X. Liu and Y.G. Zheng, Corros. Sci., 51, 761 (2009); https://doi.org/10.1016/j.corsci.2009.01.017
- M. Abdallah, Mater. Chem. Phys., 82, 786 (2003); https://doi.org/10.1016/S0254-0584(03)00367-5
- S.A. Abd El-Maksoud, Appl. Surf. Sci., 206, 129 (2003); https://doi.org/10.1016/S0169-4332(02)01188-1
- P. Udhayakala, T.V. Rajendiran and S. Gunasekaran, Int. J. Adv. Sci. Res., 3, 67 (2012).
- J. Fang and J. Li, J. Mol. Struct. THEOCHEM, 593, 179 (2002); https://doi.org/10.1016/S0166-1280(02)00316-0
- E.E. Ebenso, D.A. Isabirye and N.O. Eddy, Int. J. Mol. Sci., 11, 2473 (2010); https://doi.org/10.3390/ijms11062473
- R. Parr, L. Szentpaly and S. Liu, J. Am. Chem. Soc., 121, 1922 (1999); https://doi.org/10.1021/ja983494x
References
D.A. Jones, Principles and Prevention of Corrosion, Pearson Education Limited: Essex, p. 516 (2014).
N. Goudarzi, M. Peikari, M.R. Zahiri and H.R. Mousavi, Arch. Metall. Mater., 57, 845 (2012); https://doi.org/10.2478/v10172-012-0044-1
W.-C. Chiang, I.-S. Tseng, P. Møller, L.R. Hilbert, T. Tolker-Nielsen and J.-K. Wu, Mater. Chem. Phys., 119, 123 (2010); https://doi.org/10.1016/j.matchemphys.2009.08.035
T. Sourisseau, E. Chauveau and B. Baroux, Corros. Sci., 47, 1097 (2005); https://doi.org/10.1016/j.corsci.2004.05.024
M.B. Gonzalez and S.B. Saidman, Corros. Sci., 53, 276 (2011); https://doi.org/10.1016/j.corsci.2010.09.021
P.A. Kilmartin, L. Trier and G.A. Wright, Synth. Met., 131, 99 (2002); https://doi.org/10.1016/S0379-6779(02)00178-9
M. Urgen and A.F. Cakir, Corros. Sci., 32, 835 (1991); https://doi.org/10.1016/0010-938X(91)90028-N
H.A. El Dahan, J. Mater. Sci., 34, 851 (1999); https://doi.org/10.1023/A:1004545501971
L. Naravez, E. Cano and D.M. Bastidas, J. Appl. Electrochem., 35, 499 (2005); https://doi.org/10.1007/s10800-005-0291-1
A. Galal, N.F. Atta and M.H.S. Al-Hassan, Mater. Chem. Phys., 89, 38 (2005); https://doi.org/10.1016/j.matchemphys.2004.08.019
A.S. Fouda, M.A. Diab and S. Fathy, Int. J. Electrochem. Sci., 12, 347 (2017); https://doi.org/10.20964/2017.01.60
L.T. Popoola, Corros. Rev., 37, 71 (2019); https://doi.org/10.1515/corrrev-2018-0058
M. Yadav, T.K. Sarkar and T. Purkait, J. Mol. Liq., 212, 731 (2015); https://doi.org/10.1016/j.molliq.2015.10.021
N. Soltani, N. Tavakkoli, M. Khayatkashani, M.R. Jalali and A. Mosavizade, Corros. Sci., 62, 122 (2012); https://doi.org/10.1016/j.corsci.2012.05.003
O. Sanni, A.P.I. Popoola and O.S.I. Fayomi, Results Phys., 9, 225 (2018); https://doi.org/10.1016/j.rinp.2018.02.001
Z. Tao, S. Zhang, W. Li and B. Hou, Corros. Sci., 51, 2588 (2009); https://doi.org/10.1016/j.corsci.2009.06.042
L. Wang, M. Zhu, F. Yang and C. Gao, Int. J. Corros., 2012, 1 (2012); https://doi.org/10.1155/2012/573964
A.A. Al-Sarawy, A.S. Fouda and W.A.S. El-Dein, Desalination, 229, 279 (2008); https://doi.org/10.1016/j.desal.2007.09.013
K.F. Khaled, Electrochim. Acta, 48, 2493 (2003); https://doi.org/10.1016/S0013-4686(03)00291-3
M. Yadav, S. Yadav and A. Yadav, J. Chem. Pharm. Res., 3/6, 576 (2011).
N.F. Atta, A.M. Fekry and H.M. Hassaneen, Int. J. Hydrogen Energy, 36, 6462 (2011); https://doi.org/10.1016/j.ijhydene.2011.02.134
N. Goudarzi and H. Farahani, Anti-Corros. Methods Mater., 61, 20 (2013); https://doi.org/10.1108/ACMM-11-2012-1223
R.R. Moreira, T.F. Soares and J. Ribeiro, Adv. Chem. Eng. Sci., 4, 503 (2014); https://doi.org/10.4236/aces.2014.44052
M. Abdallah, M.M. Salem, B.A.A.L. Jahdaly, M.I. Awad, E. Helal and A.S. Fouda, Int. J. Electrochem. Sci., 12, 4543 (2017); https://doi.org/10.20964/2017.05.35
D. Gopi, K.M. Govindaraju and L. Kavitha, J. Appl. Electrochem., 40, 1349 (2010); https://doi.org/10.1007/s10800-010-0092-z
Z. Zhang, L. Ruan, X. Huang, Y. Lyu, S. Zhang, W. Shang and X. Li, Int. J. Electrochem. Sci., 12, 576 (2017); https://doi.org/10.20964/2017.01.37
S. John, K.M. Ali and A. Joseph, Bull. Mater. Sci., 34, 1245 (2011); https://doi.org/10.1007/s12034-011-0234-x
M. Prajila and A. Joseph, J. Mol. Liq., 241, 1 (2017); https://doi.org/10.1016/j.molliq.2017.05.136
N. Shet, R. Nazareth and P.A. Suchetan, Chem. Data Coll., 20, 100209 (2019); https://doi.org/10.1016/j.cdc.2019.100209
A.D. Becke, J. Chem. Phys., 98, 5648 (1993); https://doi.org/10.1063/1.464913
C. Lee, W. Yang and R.G. Parr, Phys. Rev. B Condens. Matter, 37, 785 (1988); https://doi.org/10.1103/PhysRevB.37.785
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, O.Yazyev, R.E. Stratmann, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski and D.J. Fox, Gaussian, Inc., Wallingford CT, Gaussian 09, Revision B.01 (2010).
R. Dennington, T. Keith and J. Millam, Semichem Inc., Shawnee Mission KS, GaussView, Version 5 (2009).
M.G. Fontana, Corrosion Engineering, Tata McGraw Hill: New Delhi, p. 173 (2005).
A.K. Singh and M.A. Quraishi, Int. J. Electrochem. Sci., 7, 3222 (2012).
X. Zheng, M. Gong, Q. Li and L. Guo, Sci. Rep., 8, 9140 (2018); https://doi.org/10.1038/s41598-018-27257-9
B.S. Sanatkumar, J. Nayak and A.N. Shetty, Chem. Sci. J., 2011, 37 (2011).
F.M. Mahgoub, B.A. Abdel-Nabey and Y.A. El-Samadisy, Mater. Chem. Phys., 120, 104 (2010); https://doi.org/10.1016/j.matchemphys.2009.10.028
F. Bensajjay, S. Alehyen, M. El Achouri and S. Kertit, Anti-Corros. Methods Mater., 50, 402 (2003); https://doi.org/10.1108/00035590310501558
J. Fu, J. Pan, Z. Liu, S. Li and Y. Wang, Int. J. Electrochem. Sci., 6, 2072 (2011).
N. Dinodi and A.N. Shetty, Corros. Sci., 85, 411 (2014); https://doi.org/10.1016/j.corsci.2014.04.052
A.A. Atia and M.M. Saleh, J. Appl. Electrochem., 33, 171 (2003); https://doi.org/10.1023/A:1024083117949
Y.H. Ahmad and W.M.I. Hassan, Int. J. Electrochem. Sci., 7, 12456 (2012).
P. Kumari, P. Shetty and S.A. Rao, Int. J. Corros., 2014, 1 (2014); https://doi.org/10.1155/2014/256424
E.A. Noor, Mater. Chem. Phys., 114, 533 (2009); https://doi.org/10.1016/j.matchemphys.2008.09.065
M. Bouklah, N. Benchat, B. Hammouti, A. Aouniti and S. Kertit, Mater. Lett., 60, 1901 (2006); https://doi.org/10.1016/j.matlet.2005.12.051
K.C. Emregul and M. Hayvali, Corros. Sci., 48, 797 (2006); https://doi.org/10.1016/j.corsci.2005.03.001
H. Jafari, I. Danaee, H. Eskandari and M. RashvandAvei, J. Mater. Sci. Technol., 30, 239 (2014); https://doi.org/10.1016/j.jmst.2014.01.003
T. Poornima, J. Nayak and A.N. Shetty, J. Appl. Electrochem., 41, 223 (2011); https://doi.org/10.1007/s10800-010-0227-2
S.V. Lamaka, M.L. Zheludkevich, K.A. Yasakau, M.F. Montemor and M.G.S. Ferreira, Electrochim. Acta, 52, 7231 (2007); https://doi.org/10.1016/j.electacta.2007.05.058
A. Pardo, M.C. Merino, A.E. Coy, F. Viejo, R. Arrabal and E. Matykina, Corros. Sci., 50, 780 (2008); https://doi.org/10.1016/j.corsci.2007.11.004
N. Labjar, M. Lebrini, F. Bentiss, N. Chihib, S.E. Hajjaji and C. Jama, Mater. Chem. Phys., 119, 330 (2010); https://doi.org/10.1016/j.matchemphys.2009.09.006
H.H. Hassan, E. Abdelghani and M.A. Amin, Electrochim. Acta, 52, 6359 (2007); https://doi.org/10.1016/j.electacta.2007.04.046
M. Behpour, S.M. Ghoreishi, N. Mohammadi and M. Salavati-Niasari, Corros. Sci., 53, 3380 (2011); https://doi.org/10.1016/j.corsci.2011.06.017
T. Poornima, J. Nayak and A.N. Shetty, J. Metall., 2012, 1 (2012); https://doi.org/10.1155/2012/723687
P.C. Okafor, X. Liu and Y.G. Zheng, Corros. Sci., 51, 761 (2009); https://doi.org/10.1016/j.corsci.2009.01.017
M. Abdallah, Mater. Chem. Phys., 82, 786 (2003); https://doi.org/10.1016/S0254-0584(03)00367-5
S.A. Abd El-Maksoud, Appl. Surf. Sci., 206, 129 (2003); https://doi.org/10.1016/S0169-4332(02)01188-1
P. Udhayakala, T.V. Rajendiran and S. Gunasekaran, Int. J. Adv. Sci. Res., 3, 67 (2012).
J. Fang and J. Li, J. Mol. Struct. THEOCHEM, 593, 179 (2002); https://doi.org/10.1016/S0166-1280(02)00316-0
E.E. Ebenso, D.A. Isabirye and N.O. Eddy, Int. J. Mol. Sci., 11, 2473 (2010); https://doi.org/10.3390/ijms11062473
R. Parr, L. Szentpaly and S. Liu, J. Am. Chem. Soc., 121, 1922 (1999); https://doi.org/10.1021/ja983494x