Copyright (c) 2020 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Enhanced Antimicrobial and Cytotoxicity on Cancer Cell using Bio-Originated Selenium Nanoparticles
Corresponding Author(s) : Rakhi Yadav
Asian Journal of Chemistry,
Vol. 32 No. 3 (2020): Vol 32 Issue 3
Abstract
Present work describes the bio-originated synthesis of selenium nanoparticles using seed extract of Cassia angustifolia. The biological macromolecules in seed extract react with metal ions to generate selenium nanoparticles. The seed extract acts as reducing, capping and stabilizing agents. The selenium nanoparticles produced by the plant extract are amorphous, nearly spherical in shape and held together by protein coating in a range of about 80-100 nm in size, under ambient conditions. The structural properties of selenium nanoparticles were characterized by UV-visible spectroscopy, FTIR, XRD, FESEM with EDAX, HRTEM and AFM. Antibacterial and antifungal activity of selenium nanoparticles were tested against four bacterial and two fungal strains using standard agar-well diffusion method. The zone of inhibition was observed in the selenium nanoparticles against different microbes and suggested that the bio-originated selenium nanoparticles act as an effective antibacterial and antifungal agent, so it has a great latent in the preparation of drugs used against pathogenic diseases. The cytotoxicity of bio-originated selenium nanoparticles was tested under in vitro conditions on Vero cell line and had compared with MDA-MB231 cancer cell line at different concentrations and the results had proved that bio-originated synthesis selenium nanoparticles can inhibit the growth of human breast-cancer cells by concentration-dependent manner.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X. Shi, S.H. Wang, M. Shen, M.E. Antwerp, X. Chen, C. Li, E.J. Petersen, Q. Huang, W.J. Weber and JR Baker, Biomacromolecules, 10, 1744 (2009); https://doi.org/10.1021/bm9001624
- S. Nie, Y. Xing, G.J. Kim and J.W. Simons, Annu. Rev. Biomed. Eng., 9, 257 (2007); https://doi.org/10.1146/annurev.bioeng.9.060906.152025
- S. Prabha, M. Dubey and L.M. Sillanpää, Process Biochem., 45, 1065 (2010); https://doi.org/10.1016/j.procbio.2010.03.024
- K.P. Kumar, W. Paul and C.P. Sharma, Process Biochem., 46, 2007 (2011); https://doi.org/10.1016/j.procbio.2011.07.011
- Y. Mehdi, J.L. Hornick, L. Istasse and I. Dufrasne, Molecules, 18, 3292 (2013); https://doi.org/10.3390/molecules18033292
- N.I. Barclay, J. Food Compos. Anal., 8, 307 (1995); https://doi.org/10.1006/jfca.1995.1025
- E. Dumont, F. Vanhaecke and R. Cornelis, Anal. Bioanal. Chem., 385, 1304 (2006); https://doi.org/10.1007/s00216-006-0529-8
- A. Demirci, A.L. Pometto and J.D. Cox, J. Agric. Food Chem., 47, 2496 (1999); https://doi.org/10.1021/jf9811976+
- J. Zhang, X. Wang and T.T. Xu, Toxicol Sci., 101, 22 (2008); https://doi.org/10.1093/toxsci/kfm221
- J.S. Zhang, X.Y. Gao, L.D. Zhang and Y.P. Bao, BioFactors, 15, 27 (2001); https://doi.org/10.1002/biof.5520150103
- H. Wang, J. Zhang and H. Yu, Free Radic Biol Med., 42, 1524 (2007); https://doi.org/10.1016/j.freeradbiomed.2007.02.013
- G. Sharma, A.R. Sharma, R. Bhavesh, J. Park, B. Ganbold, J.S. Nam and S.S. Lee, Molecules, 19, 2761 (2014); https://doi.org/10.3390/molecules19032761
- X. Zhou, Y. Wang, Q. Gu, W. Li, X. Zhou, Y. Wang, Q. Gu and W. Li, Aquaculture, 291, 78 (2009); https://doi.org/10.1016/j.aquaculture.2009.03.007
- S. Dhanjal and S.S. Cameotra, Microb. Cell Fact., 9, 52 (2010); https://doi.org/10.1186/1475-2859-9-52.
- W. Zhang, Z. Chen, H. Liu, L. Zhang, P. Gao and D. Li, Colloids Surf. B Biointerfaces, 88, 196 (2011); https://doi.org/10.1016/j.colsurfb.2011.06.031
- S.K. Torres, V.S. Campos, C.G. Leon, S.M. Rodriguez-Llamazares, S.M. Rojas, M. Gonzalez, C. Smith and M.A. Mondaca, J. Nanopart. Res., 14, 1236 (2012); https://doi.org/10.1007/s11051-012-1236-3
- H. Lu, E.L. Salabas and F. Schüth, Angew. Chem. Int. Ed., 46, 1222 (2007); https://doi.org/10.1002/anie.200602866.
- P.A. Tran and T.J. Webster, Int. J. Nanomed., 6, 1553 (2011); https://doi.org/10.2147/IJN.S21729
- S. Barnaby, N. Sarker, A. Dowdell and I. Banerjee, The Fordham Undergrad. Res. J., 1, 41 (2011).
- A.R. Ingole, S.R. Thakare, N.T. Khati, A.V. Wankhade and D.K. Burghate, Chalcogenide Lett., 7, 485 (2010).
- K.S. Prasad, H. Patel, T. Patel, K. Patel and K. Selvaraj, Colloids Surf. B Biointerfaces, 103, 261 (2013); https://doi.org/10.1016/j.colsurfb.2012.10.029
- K.S. Prasad and K. Selvaraj, Biol. Trace Elem. Res., 157, 275 (2014); https://doi.org/10.1007/s12011-014-9891-0
- S. Li, Y. Shen, A. Xie, X. Yu, X. Zhang, L. Yang and C. Li, Nanotechnology, 18, 405101 (2007); https://doi.org/10.1088/0957-4484/18/40/405101
- Ch. Ramamurthy, K.S. Sampath, P. Arunkumar, M.S. Kumar, V. Sujatha, K. Premkumar and C. Thirunavukkarasu, Bioprocess Biosyst. Eng., 36, 1131 (2013); https://doi.org/10.1007/s00449-012-0867-1
- J. Zhang, Z. Teng, Y. Yuan and Q.-Z. Zeng, Int. J. Biol. Macromol., 107, 1406 (2018); https://doi.org/10.1016/j.ijbiomac.2017.09.1172017
- H. Kong, J. Yang, Y. Zhang, Y. Fang, K. Nishinari and G.O. Phillips, Int. J. Biol. Macromol., 65, 155 (2014); https://doi.org/10.1016/j.ijbiomac.2014.01.011
- S. Menon, S. Devi K.S., H. Agarwal and V.K. Shanmugam, Colloid Interf. Sci. Commun., 29, 1 (2019); https://doi.org/10.1016/j.colcom.2018.12.004
- P.B. Ezhuthupurakkal, P.L. Rao, A. Suyavaran, A. Subastri and V. Sujatha, Mater. Sci. Eng. C, 74, 597 (2017); https://doi.org/10.1016/j.msec.2017.02.003
- S.-Y. Zhang, J. Zhang and H.-Y. Wang, Mater. Lett., 58, 2590 (2004); https://doi.org/10.1016/j.matlet.2004.03.031
- R.S. Oremland, M.J. Herbel, J.S. Blum, S. Langley, T.J. Beveridge, P.M. Ajayan, T. Sutto, A.V. Ellis and S. Curran, Appl. Environ. Microbiol., 70, 52 (2004); https://doi.org/10.1128/AEM.70.1.52-60.2004
- A. Sweety, Appl. Microbiol. Biotechnol., 100, 2555 (2016); https://doi.org/10.1007/s00253-016-7300-7
- R. Ahmed, K. Nagori, T. Kumar, M. Singh and D. Dewangan, Int. J. Res. Ayurveda Pharm., 2, 1320 (2011).
- S.I. Ahmed, M.Q. Hayat, M. Tahir, Q. Mansoor, M. Ismail, K. Keck and B. Robert, BMC Complement. Altern. Med., 16, 460 (2016); https://doi.org/10.1186/s12906-016-1443-z
- H. Dave and L. Ledwani, Indian J. Nat. Prod. Res., 3, 291 (2012).
- M. Srivastava, S. Srivastava, S. Khatoon, A.K.S. Rawat, S. Mehrotra and P. Pushpangadan, Pharm. Biol., 44, 202 (2008); https://doi.org/10.1080/13880200600686442
- A. Ananth, V. Keerthika and M.R. Rajan, Curr. Sci., 116, 285 (2019); https://doi.org/10.18520/cs/v116/i2/285-290
- H. Hariharan, N. Al-harbi, P. Karuppiah and S. Rajaram, Chalcogenide Lett., 9, 509 (2012).
- A. Shahverdi, A. Fakhimi, G. Masavat, P. Fesharaki, S. Rezaie and S. Rezayat, World Appl. Sci. J., 10, 918 (2010).
- Z. Kazampour, M. Hossein, F. Yazdi and A. Shahverdi, Iran. J. Microbiol., 5, 81 (2013).
- T. Chen, Y.S. Wong, W. Zheng, Y. Bai and L. Huang, Colloids Surf. B Biointerfaces, 67, 26 (2008); https://doi.org/10.1016/j.colsurfb.2008.07.010
- F. Yang, Q. Tang, X. Zhong, Y. Bai, T. Chen, Y. Zhang, Y. Li and W. Zheng, Int. J. Nanomed., 7, 835 (2012); https://doi.org/10.2147/IJN.S28278
- H. Wu, X. Li, W. Liu, T. Chen, Y. Li, W. Zheng, C.W.Y. Man, M.K. Wong and K.H. Wong, J. Mater. Chem., 22, 9602 (2012); https://doi.org/10.1039/C2JM16828F
- C. Jayaseelan, A.A. Rahuman, S. Marimuthu, T. Santhoshkumar, A.V. Kirthi, A. Bagavan, K. Gaurav, L. Karthik and K.V. Rao, Spectrochim. Acta A Mol. Biomol. Spectrosc., 90, 78 (2012); https://doi.org/10.1016/j.saa.2012.01.006
- B. Yu, Y. Zhang, W. Zheng, C. Fan and T. Chen, Inorg. Chem., 51, 8956 (2012); https://doi.org/10.1021/ic301050v
- T. Mossmann, J. Immunol. Methods, 65, 55 (1983).
- P.J. Fesharaki, P. Nazari, M. Shakibaie, S. Rezaie, M. Banoee, M. Abdollahi and A.R. Shahverdi, Braz. J. Microbiol., 41, 461 (2010); https://doi.org/10.1590/S1517-83822010000200028
- B. Zare, S. Babaie, N. Setayesh and A.R. Shahverdi, Nanomed. J., 1, 13 (2013); https://doi.org/10.7508/NMJ.2013.01.002
- W. Jiang, B.Y. Kim, J.T. Rutka and W.C. Chan, Nat. Nanotechnol., 3, 145 (2008); https://doi.org/10.1038/nnano.2008.30
- S. Verma, S. Abirami and S. Mahalakshmi, J. Microbiol. Biotechnol. Res., 3, 54 (2013).
- A. Parveen and S. Rao, J. Cluster Sci., 26, 775 (2015); https://doi.org/10.1007/s10876-014-0744-y
References
X. Shi, S.H. Wang, M. Shen, M.E. Antwerp, X. Chen, C. Li, E.J. Petersen, Q. Huang, W.J. Weber and JR Baker, Biomacromolecules, 10, 1744 (2009); https://doi.org/10.1021/bm9001624
S. Nie, Y. Xing, G.J. Kim and J.W. Simons, Annu. Rev. Biomed. Eng., 9, 257 (2007); https://doi.org/10.1146/annurev.bioeng.9.060906.152025
S. Prabha, M. Dubey and L.M. Sillanpää, Process Biochem., 45, 1065 (2010); https://doi.org/10.1016/j.procbio.2010.03.024
K.P. Kumar, W. Paul and C.P. Sharma, Process Biochem., 46, 2007 (2011); https://doi.org/10.1016/j.procbio.2011.07.011
Y. Mehdi, J.L. Hornick, L. Istasse and I. Dufrasne, Molecules, 18, 3292 (2013); https://doi.org/10.3390/molecules18033292
N.I. Barclay, J. Food Compos. Anal., 8, 307 (1995); https://doi.org/10.1006/jfca.1995.1025
E. Dumont, F. Vanhaecke and R. Cornelis, Anal. Bioanal. Chem., 385, 1304 (2006); https://doi.org/10.1007/s00216-006-0529-8
A. Demirci, A.L. Pometto and J.D. Cox, J. Agric. Food Chem., 47, 2496 (1999); https://doi.org/10.1021/jf9811976+
J. Zhang, X. Wang and T.T. Xu, Toxicol Sci., 101, 22 (2008); https://doi.org/10.1093/toxsci/kfm221
J.S. Zhang, X.Y. Gao, L.D. Zhang and Y.P. Bao, BioFactors, 15, 27 (2001); https://doi.org/10.1002/biof.5520150103
H. Wang, J. Zhang and H. Yu, Free Radic Biol Med., 42, 1524 (2007); https://doi.org/10.1016/j.freeradbiomed.2007.02.013
G. Sharma, A.R. Sharma, R. Bhavesh, J. Park, B. Ganbold, J.S. Nam and S.S. Lee, Molecules, 19, 2761 (2014); https://doi.org/10.3390/molecules19032761
X. Zhou, Y. Wang, Q. Gu, W. Li, X. Zhou, Y. Wang, Q. Gu and W. Li, Aquaculture, 291, 78 (2009); https://doi.org/10.1016/j.aquaculture.2009.03.007
S. Dhanjal and S.S. Cameotra, Microb. Cell Fact., 9, 52 (2010); https://doi.org/10.1186/1475-2859-9-52.
W. Zhang, Z. Chen, H. Liu, L. Zhang, P. Gao and D. Li, Colloids Surf. B Biointerfaces, 88, 196 (2011); https://doi.org/10.1016/j.colsurfb.2011.06.031
S.K. Torres, V.S. Campos, C.G. Leon, S.M. Rodriguez-Llamazares, S.M. Rojas, M. Gonzalez, C. Smith and M.A. Mondaca, J. Nanopart. Res., 14, 1236 (2012); https://doi.org/10.1007/s11051-012-1236-3
H. Lu, E.L. Salabas and F. Schüth, Angew. Chem. Int. Ed., 46, 1222 (2007); https://doi.org/10.1002/anie.200602866.
P.A. Tran and T.J. Webster, Int. J. Nanomed., 6, 1553 (2011); https://doi.org/10.2147/IJN.S21729
S. Barnaby, N. Sarker, A. Dowdell and I. Banerjee, The Fordham Undergrad. Res. J., 1, 41 (2011).
A.R. Ingole, S.R. Thakare, N.T. Khati, A.V. Wankhade and D.K. Burghate, Chalcogenide Lett., 7, 485 (2010).
K.S. Prasad, H. Patel, T. Patel, K. Patel and K. Selvaraj, Colloids Surf. B Biointerfaces, 103, 261 (2013); https://doi.org/10.1016/j.colsurfb.2012.10.029
K.S. Prasad and K. Selvaraj, Biol. Trace Elem. Res., 157, 275 (2014); https://doi.org/10.1007/s12011-014-9891-0
S. Li, Y. Shen, A. Xie, X. Yu, X. Zhang, L. Yang and C. Li, Nanotechnology, 18, 405101 (2007); https://doi.org/10.1088/0957-4484/18/40/405101
Ch. Ramamurthy, K.S. Sampath, P. Arunkumar, M.S. Kumar, V. Sujatha, K. Premkumar and C. Thirunavukkarasu, Bioprocess Biosyst. Eng., 36, 1131 (2013); https://doi.org/10.1007/s00449-012-0867-1
J. Zhang, Z. Teng, Y. Yuan and Q.-Z. Zeng, Int. J. Biol. Macromol., 107, 1406 (2018); https://doi.org/10.1016/j.ijbiomac.2017.09.1172017
H. Kong, J. Yang, Y. Zhang, Y. Fang, K. Nishinari and G.O. Phillips, Int. J. Biol. Macromol., 65, 155 (2014); https://doi.org/10.1016/j.ijbiomac.2014.01.011
S. Menon, S. Devi K.S., H. Agarwal and V.K. Shanmugam, Colloid Interf. Sci. Commun., 29, 1 (2019); https://doi.org/10.1016/j.colcom.2018.12.004
P.B. Ezhuthupurakkal, P.L. Rao, A. Suyavaran, A. Subastri and V. Sujatha, Mater. Sci. Eng. C, 74, 597 (2017); https://doi.org/10.1016/j.msec.2017.02.003
S.-Y. Zhang, J. Zhang and H.-Y. Wang, Mater. Lett., 58, 2590 (2004); https://doi.org/10.1016/j.matlet.2004.03.031
R.S. Oremland, M.J. Herbel, J.S. Blum, S. Langley, T.J. Beveridge, P.M. Ajayan, T. Sutto, A.V. Ellis and S. Curran, Appl. Environ. Microbiol., 70, 52 (2004); https://doi.org/10.1128/AEM.70.1.52-60.2004
A. Sweety, Appl. Microbiol. Biotechnol., 100, 2555 (2016); https://doi.org/10.1007/s00253-016-7300-7
R. Ahmed, K. Nagori, T. Kumar, M. Singh and D. Dewangan, Int. J. Res. Ayurveda Pharm., 2, 1320 (2011).
S.I. Ahmed, M.Q. Hayat, M. Tahir, Q. Mansoor, M. Ismail, K. Keck and B. Robert, BMC Complement. Altern. Med., 16, 460 (2016); https://doi.org/10.1186/s12906-016-1443-z
H. Dave and L. Ledwani, Indian J. Nat. Prod. Res., 3, 291 (2012).
M. Srivastava, S. Srivastava, S. Khatoon, A.K.S. Rawat, S. Mehrotra and P. Pushpangadan, Pharm. Biol., 44, 202 (2008); https://doi.org/10.1080/13880200600686442
A. Ananth, V. Keerthika and M.R. Rajan, Curr. Sci., 116, 285 (2019); https://doi.org/10.18520/cs/v116/i2/285-290
H. Hariharan, N. Al-harbi, P. Karuppiah and S. Rajaram, Chalcogenide Lett., 9, 509 (2012).
A. Shahverdi, A. Fakhimi, G. Masavat, P. Fesharaki, S. Rezaie and S. Rezayat, World Appl. Sci. J., 10, 918 (2010).
Z. Kazampour, M. Hossein, F. Yazdi and A. Shahverdi, Iran. J. Microbiol., 5, 81 (2013).
T. Chen, Y.S. Wong, W. Zheng, Y. Bai and L. Huang, Colloids Surf. B Biointerfaces, 67, 26 (2008); https://doi.org/10.1016/j.colsurfb.2008.07.010
F. Yang, Q. Tang, X. Zhong, Y. Bai, T. Chen, Y. Zhang, Y. Li and W. Zheng, Int. J. Nanomed., 7, 835 (2012); https://doi.org/10.2147/IJN.S28278
H. Wu, X. Li, W. Liu, T. Chen, Y. Li, W. Zheng, C.W.Y. Man, M.K. Wong and K.H. Wong, J. Mater. Chem., 22, 9602 (2012); https://doi.org/10.1039/C2JM16828F
C. Jayaseelan, A.A. Rahuman, S. Marimuthu, T. Santhoshkumar, A.V. Kirthi, A. Bagavan, K. Gaurav, L. Karthik and K.V. Rao, Spectrochim. Acta A Mol. Biomol. Spectrosc., 90, 78 (2012); https://doi.org/10.1016/j.saa.2012.01.006
B. Yu, Y. Zhang, W. Zheng, C. Fan and T. Chen, Inorg. Chem., 51, 8956 (2012); https://doi.org/10.1021/ic301050v
T. Mossmann, J. Immunol. Methods, 65, 55 (1983).
P.J. Fesharaki, P. Nazari, M. Shakibaie, S. Rezaie, M. Banoee, M. Abdollahi and A.R. Shahverdi, Braz. J. Microbiol., 41, 461 (2010); https://doi.org/10.1590/S1517-83822010000200028
B. Zare, S. Babaie, N. Setayesh and A.R. Shahverdi, Nanomed. J., 1, 13 (2013); https://doi.org/10.7508/NMJ.2013.01.002
W. Jiang, B.Y. Kim, J.T. Rutka and W.C. Chan, Nat. Nanotechnol., 3, 145 (2008); https://doi.org/10.1038/nnano.2008.30
S. Verma, S. Abirami and S. Mahalakshmi, J. Microbiol. Biotechnol. Res., 3, 54 (2013).
A. Parveen and S. Rao, J. Cluster Sci., 26, 775 (2015); https://doi.org/10.1007/s10876-014-0744-y