Copyright (c) 2020 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Computational Study of Novel 2,3-Bis[(1-methyl-1H-imidazole-2-yl)sulfanyl]quinoxaline: Structural Aspects, Spectroscopic Investigation, HOMO-LUMO, MESP, NLO, ADMET Predictions and Molecular Docking Studies as Potential Biotin Carboxylase and Antibiotics R
Corresponding Author(s) : Ashutosh Kumar
Asian Journal of Chemistry,
Vol. 32 No. 3 (2020): Vol 32 Issue 3
Abstract
In this paper, a complete quantum chemical calculation has been done to describe the relevant structural aspects of novel 2,3-bis[(1-methyl-1H-imidazole-2-yl)sulfanyl]quinoxaline with combination of DFT/B3LYP method 6-311++G(d,p) basis set in gas phase and in solvent phase. The molecular structure was examined by using IR, 1H & 13C NMR and UV-visible techniques and solvent effect on spectroscopic properties are also discussed. The vibrational assignments are analyzed by PED using Gauss View 5.0 and VEDA 4.0 program. The 1H NMR and 13C NMR chemical shifts are calculated using the gauge-independent atomic orbital method (GIAO method) in gas phase and in solvents (water, DMSO and chloroform). The UV spectrum is calculated by using TD-DFT/6-311++G(d,p) method in gas phase and in solvent (water, DMSO and chloroform) using IEF-PCM model. With the help of theoretical calculations chemical activities, electrophilic/nucleophilic nature and sites in the molecule, molecular and chemical properties that cannot be obtained by experimental way are obtained. Accordingly, molecular electrostatic potential (MESP), hardness (η)/softness (S) parameters, net charges analyses are investigated to gain electrophilic and nucleophilic nature. Also the sites in molecule and Fukui function analysis are discussed. The dipole moment (μ), polarizability (αtot), anisotropic polarizability (Δα) and first-order hyperpolarizability (βtot) of the title compound are reported and results shows that the material is capable to generate non-linear effect (NLO). The in silico study of all the biological and ADMET properties of title molecule are also discussed and compared with reference drug ciprofloxacin antibiotics. The title molecule and reference drug ciprofloxacin docked with biotin carboxylase enzyme (PDB ID: 2V59) of E. coli and aminoglycoside phosphotransferase APH(2")IVA (PDB ID: 4DFU) of Enterococcus casseliflavus receptor with the help of Molegro molecular viewer 2.5 program and binding affinity (ΔG) were determined by ParDock server.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H.W. Boucher, G.H. Talbot, J.S. Bradley, J.E. Edwards, D. Gilbert, L.B. Rice, M. Scheld, B. Spellberg and J. Bartlett, Clin. Infect. Dis., 48, 1 (2009); https://doi.org/10.1086/595011
- G. Taubes, Science, 321, 356 (2008); https://doi.org/10.1126/science.321.5887.356
- A.Y. Peleg and D.C. Hooper, N. Engl. J. Med., 362, 1804 (2010); https://doi.org/10.1056/NEJMra0904124
- R.J. Heath, S.W. White and C.O. Rock, Prog. Lipid Res., 40, 467 (2001); https://doi.org/10.1016/S0163-7827(01)00012-1
- J.W. Capbelll and J.E. Jr Cronan, Annu. Rev. Microbiol., 55, 305 (2001).
- Y.M. Zhang, S.W. White and C.O. Rock, J. Biol. Chem., 281, 17541 (2006); https://doi.org/10.1074/jbc.R600004200
- A. Kucers, S. Crowe, M.L. Grayson and J. Hoy, The Use of Antibiotics: A Clinical Review of Antibacterial, Antifungal, and Antiviral Drugs, Butterworth Heinemann: Oxford, edn 5, pp. 452-457 (1997).
- J. Davies and G. Wright, Trends Microbiol., 5, 234 (1997); https://doi.org/10.1016/S0966-842X(97)01033-0
- T.C. Broussard, A.E. Price, S.M. Laborde and G.L. Waldrop, Biochemistry, 52, 3346 (2013); https://doi.org/10.1021/bi4000707
- A.K. Patidar, M. Jeyakandan, A.K. Mobiya and G. Selvam, Int. J. PharmTech Res., 3, 386 (2011).
- S. Au, J. Schacht and N. Weiner, Biomembranes, 862, 205 (1986); https://doi.org/10.1016/0005-2736(86)90484-0
- S.T. Nguyen, J.D. Williams, M.M. Butler, X. Ding, D.M. Mills, T.F. Tashjian, R.G. Panchal, S.K. Weir, C. Moon, H.O. Kim, J.A. Marsden, N.P. Peet and T.L. Bowlin, Bioorg. Med. Chem. Lett., 24, 3366 (2014); https://doi.org/10.1016/j.bmcl.2014.05.094
- R. Musiol, M. Serda, S.P. Hensel-Bielowka and J. Polanski, J. Curr. Med. Chem., 17, 1960 (2010); https://doi.org/10.2174/092986710791163966
- J.P. Kleim, R. Bender, U.M. Billhardt, C. Meichsner, G. Riess, M. Rosner, I. Winkler and A. Paessens, Antimicrob. Agents Chemother., 37, 1659 (1993); https://doi.org/10.1128/AAC.37.8.1659
- M. Suresh, P. Lavanya, D. Sudhakar, K. Vasu and C.V. Rao, J. Chem. Pharm. Res., 2, 497 (2010).
- V.K. Tandon, D.B. Yadav, H.K. Maurya, A.K. Chaturvedi and P.K. Shukla, Bioorg. Med. Chem., 14, 6120 (2006); https://doi.org/10.1016/j.bmc.2006.04.029.
- B. Zarranz, A.A. Jaso, I. Aldana and A. Monge, Bioorg. Med. Chem., 11, 2149 (2003); https://doi.org/10.1016/S0968-0896(03)00119-6.
- M.M. Badran, A.A. Moneer, H.M. Refaat and A.A. El-Malah, J. Chin. Chem. Soc., 54, 469 (2007); https://doi.org/10.1002/jccs.200700066.
- B. Solano, V. Junnotula, A. Marin, R. Villar, A. Burguete, E. Vicente, S. Perez-Silanes, I. Aldana, A. Monge, S. Dutta, U. Sarkar and K.S. Gates, J. Med. Chem., 50, 5485 (2007); https://doi.org/10.1021/jm0703993.
- G. Olayiwola, C.A. Obafemi and F.O. Taiwo, Afr. J. Biotechnol., 6, 777 (2007).
- A. Wadood, N. Ahmed, L. Shah, A. Ahmad, H. Hassan and S. Shams, Drug Des. Devel. Ther., 1, 3 (2013).
- E. Krovat, T. Steindl and T. Langer, Curr. Comp-Aid. Drug Des., 1, 93 (2005); https://doi.org/10.2174/1573409052952314.
- V. Alcolea, D. Plano, D.N. Karelia, J.A. Palop, S. Amin, C. Sanmartín and A.K. Sharma, Eur. J. Med. Chem., 113, 134 (2016); https://doi.org/10.1016/j.ejmech.2016.02.042.
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O.
- Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski and D.J. Fox, Gaussian, Inc., Wallingford CT (2009).
- K.R. Cousins, J. Am. Soc., 133, 8388 (2011); https://doi.org/10.1021/ja204075s
- E. Frich, H. P. Hratchian, R. D. Dennington II, T. A. Keith, John Millam, B. Nielsen, A. J. Holder, J. Hiscocks. Gaussian. Inc. GaussView Version 5.0.8 (2009).
- M.H. Jamroz, Vibrational Energy Distribution Analysis: VEDA 4 Program, Warsaw, Poland (2004).
- M.J. Frisch, J.A. Pople and J.S. Binkley, J. Chem. Phys., 80, 3265 (1984); https://doi.org/10.1063/1.447079
- R. Ditchfield, Mol. Phys., 27, 789 (1974); https://doi.org/10.1080/00268977400100711
- N.M. O’boyle, A.L. Tenderholt and K.M. Langner, J. Comput. Chem., 29, 839 (2008); https://doi.org/10.1002/jcc.20823
- A. Kumar, A. Pandey and A. Mishra, J. Biol. Chem. Res., 36, 1 (2019).
- A.D. Bochevarov, E. Harder, T.F. Hughes, J.R. Greenwood, D.A. Braden, D.M. Philipp, D. Rinaldo, M.D. Halls, J. Zhang and R.A. Friesner, Int. J. Quant. Chem., 113, 2110 (2013); https://doi.org/10.1002/qua.24481
- A. Pandey, A. Kumar and A. Mishra, J. Biol. Chem. Res., 36, 102 (2019).
- A. Pandey, A. Kumar and A. Mishra, Int. J. Sci. Res. Rev., 8, 2087 (2019). 35. http://www.molinspiration.com.
- http://www.acdlabs.com.
- http://www.swissadme.ch/index.php.
- http://preadmet.bmdrc.kr.
- www.molsoft.com/cgi-bin/msearch.cgi.
- http://tox.charite.de/protox_II/.
- http://www.rcsb.org/pdb.
- R. Thomsen and M.H. Christensen, J. Med. Chem., 49, 3315 (2006); https://doi.org/10.1021/jm051197e
- A. Gupta, P. Sharma and B. Jayaram, Protein Pept. Lett., 14, 632 (2007); https://doi.org/10.2174/092986607781483831
- I. Fleming, Frontier Orbitals and Organic Chemical Reactions, Wiley: London (1976).
- A.M. Asiri, M. Karabacak, M. Kurt and K.A. Alamry, Spectrochim. Acta A Mol. Biomol. Spectrosc., 82, 444 (2011); https://doi.org/10.1016/j.saa.2011.07.076
- B. Kosar and C. Albayrak, Spectrochim. Acta A Mol. Biomol. Spectrosc., 78, 160 (2011); https://doi.org/10.1016/j.saa.2010.09.016
- Y.N. Mabkhot, F.D. Aldawsari, S.S. Al-Showiman, A. Barakat, S.M. Soliman, M.I. Choudhary, S. Yousuf, M.S. Mubarak and T.B. Hadda, Chem. Cent. J., 9, 24 (2015); https://doi.org/10.1186/s13065-015-0100-9
- S. Suganthi, P. Balu, V. Sathyanarayanamoorthi, V. Kannappan, M. G. Mohamed Kamil, R. Kumar, J. Mol. Struct., 1108, 1 (2016); https://doi.org/10.1016/j.molstruc.2015.11.069
- R.G. Parr, L.V. Szentpaly and S. Liu, J. Am. Chem. Soc., 121, 1922 (1999); https://doi.org/10.1021/ja983494x
- O. Tamer, B. Sariboga and I. Uçar, Struct. Chem., 23, 659 (2012); https://doi.org/10.1007/s11224-011-9910-0
- E. Scrocco and J. Tomasi, Adv. Quantum Chem., 11, 115 (1978); https://doi.org/10.1016/S0065-3276(08)60236-1
- F.J. Luque, J.M. Lopez and M. Orozco, Theor. Chem. Acc., 103, 343 (2000); https://doi.org/10.1007/s002149900013
- G. Schneider, Prediction of Drug-Like Properties, In: Madame Curie Bioscience Database, Landes Bioscience: Austin (TX) (2000-2013).
- J.C. Adams, M.J. Keiser, L. Basuino, H.F. Chambers, D.-S. Lee, O.G. Wiest and P.C. Babbitt PLoS Comput. Biol., 5, e1000474 (2009) https://doi.org/10.1371/journal.pcbi.1000474
- J.M. Seminario, Molecular Electrostatic Potentials, Concepts and Applications, Elsevier: Amsterdam (1996).
- P.W. Ayers and R.G. Parr, J. Am. Chem. Soc., 122, 2010 (2000); https://doi.org/10.1021/ja9924039
- R.G. Parr and W.J. Yang, Am. Chem. Soc., 106, 4049 (1984); https://doi.org/10.1021/ja00326a036
- W. Yang and W.J.J. Mortier, J. Am. Chem. Soc., 108, 5708 (1986); https://doi.org/10.1021/ja00279a008
- R.K. Roy, S. Krishnamurti, P. Geerlings and S. Pal, J. Phys. Chem. A, 102, 3746 (1998); https://doi.org/10.1021/jp973450v
- P.K. Chattaraj, B. Maiti and U. Sarkar, J. Phys. Chem. A, 107, 4973 (2003); https://doi.org/10.1021/jp034707u
- M. Govindarajan, M. Karabacak, S. Periandy and D. Tanuja, Spectrochim. Acta A Mol. Biomol. Spectrosc., 97, 231 (2012); https://doi.org/10.1016/j.saa.2012.06.014
- R.S. Mulliken, J. Chem. Phys., 23, 1833 (1955); https://doi.org/10.1063/1.1740588
- E.R. Davidson and S. Chakravorty, Theor. Chim. Acta, 83, 319 (1992); https://doi.org/10.1007/BF01113058
- M.D. Segall, C.J. Pickard, R. Shah and M.C. Payne, Mol. Phys., 89, 571 (1996); https://doi.org/10.1080/002689796173912
- R.M. Silverstein, G.C. Basseler and C. Morill, Spectroscopic Identification of Organic Compounds, Wiley, New York (1981).
- R. Shunmugam and D.N. Sathyanarayana, Spectrochim. Acta A Mol.. Spectrosc., 40, 757 (1984); https://doi.org/10.1016/0584-8539(84)80100-2
- A.R. Prabhakaran and S. Mohan, Indian J. Phys., 63B, 468 (1989).
- R.M. Silverstein, F.X. Webster and D. Kiemle, Spectrometric Identification of Organic Compounds, John Wiley & ons Inc., edn 2 (2005).
- M. Karabacak, C. Karaca, A. Atac, M. Eskici, A. Karanfil and E. Kose, Spectrochim. Acta A Mol. Biomol. Spectrosc., 97, 556 (2012); https://doi.org/10.1016/j.saa.2012.05.087
- D. Sajan, H. Joe, V.S. Jayakumar and J. Zaleski, J. Mol. Struct., 785, 43 (2006); https://doi.org/10.1016/j.molstruc.2005.09.041
- V.M. Geskin, C. Lambert and J.-L. Brédas, J. Am. Chem. Soc., 125, 15651 (2003); https://doi.org/10.1021/ja035862p
- R. Zhang, B. Du, G. Sun and Y. Sun, Spectrochim. Acta A Mol. Biomol. Spectrosc., 75, 1115 (2010); https://doi.org/10.1016/j.saa.2009.12.067
- A. Verma, Asian Pac. J. Trop. Biomed., 2, S1735 (2012); https://doi.org/10.1016/S2221-1691(12)60486-9
- C.A. Lipinski, F. Lombardo, B.W. Dominy and P.J. Feeney, Adv. Drug Deliv. Rev., 46, 3 (2001); https://doi.org/10.1016/S0169-409X(00)00129-0
- P. Ertl, B. Rohde and P. Selzer, J. Med. Chem., 43, 3714 (2000); https://doi.org/10.1021/jm000942e
- N. Roy and R.U. Kadam, Indian J. Pharm. Sci., 69, 609 (2007); https://doi.org/10.4103/0250-474X.38464
- A.K. Ghose, T. Herbertz, R.L. Hudkins, B.D. Dorsey and J.P. Mallamo, ACS Chem. Neurosci., 3, 50 (2012); https://doi.org/10.1021/cn200100h
- D.E. Pires, T.L. Blundell and D.B. Ascher, J. Med. Chem., 58, 4066 (2015); https://doi.org/10.1021/acs.jmedchem.5b00104
- A. Daina and V. Zoete, ChemMedChem, 11, 1117 (2016); https://doi.org/10.1002/cmdc.201600182
- F. Yamashita and M. Hashida, Drug. Metab. Pharm., 19, 327 (2004); https://doi.org/10.2133/dmpk.19.327
- F.J. Azeredo, F.T. Uchoa and T.D. Costa, Rev. Bras. Farm., 90, 321 (2009).
- B.N. Ames, E.G. Gurney, J.A. Miller and H. Bartsch, Proc. Natl. Acad. Sci. USA, 69, 3128 (1972); https://doi.org/10.1073/pnas.69.11.3128
- M.N. Drwal, P. Banerjee, M. Dunkel, M.R. Wettig and R. Preissner, Nucleic Acids Res., 42(W1), W53 (2014); https://doi.org/10.1093/nar/gku401
- F. Ntie-Kang, L.L. Lifongo, J.A. Mbah, L.C. Owono Owono, E. Megnassan, L.M. Mbaze, P.N. Judson, W. Sippl and S.M.N. Efange, In Silico Pharmacol., 1, 12 (2013); https://doi.org/10.1186/2193-9616-1-12
- J.R. Miller, S. Dunham, I. Mochalkin, C. Banotai, M. Bowman, S. Buist, B. Dunkle, D. Hanna, H.J. Harwood, M.D. Huband, A. Karnovsky, M. Kuhn, C. Limberakis, J.Y. Liu, S. Mehrens, W.T. Mueller, L. Narasimhan, A. Ogden, J. Ohren, J.V.N.V. Prasad, J.A. Shelly, L. Skerlos, M. Sulavik, V.H. Thomas, S. Vander Roest, L.A. Wang, Z. Wang, A. Whitton, T. Zhu and C.K. Stover, Proc. Natl. Acad. Sci. USA, 106, 1737 (2009); https://doi.org/10.1073/pnas.0811275106
- S. Velankar, P. McNeil, V. Mittard-Runte, A. Suarez, D. Barrell, R. Apweiler and K. Henrick, Nucleic Acids Res., 33, D262 (2004); https://doi.org/10.1093/nar/gki058
References
H.W. Boucher, G.H. Talbot, J.S. Bradley, J.E. Edwards, D. Gilbert, L.B. Rice, M. Scheld, B. Spellberg and J. Bartlett, Clin. Infect. Dis., 48, 1 (2009); https://doi.org/10.1086/595011
G. Taubes, Science, 321, 356 (2008); https://doi.org/10.1126/science.321.5887.356
A.Y. Peleg and D.C. Hooper, N. Engl. J. Med., 362, 1804 (2010); https://doi.org/10.1056/NEJMra0904124
R.J. Heath, S.W. White and C.O. Rock, Prog. Lipid Res., 40, 467 (2001); https://doi.org/10.1016/S0163-7827(01)00012-1
J.W. Capbelll and J.E. Jr Cronan, Annu. Rev. Microbiol., 55, 305 (2001).
Y.M. Zhang, S.W. White and C.O. Rock, J. Biol. Chem., 281, 17541 (2006); https://doi.org/10.1074/jbc.R600004200
A. Kucers, S. Crowe, M.L. Grayson and J. Hoy, The Use of Antibiotics: A Clinical Review of Antibacterial, Antifungal, and Antiviral Drugs, Butterworth Heinemann: Oxford, edn 5, pp. 452-457 (1997).
J. Davies and G. Wright, Trends Microbiol., 5, 234 (1997); https://doi.org/10.1016/S0966-842X(97)01033-0
T.C. Broussard, A.E. Price, S.M. Laborde and G.L. Waldrop, Biochemistry, 52, 3346 (2013); https://doi.org/10.1021/bi4000707
A.K. Patidar, M. Jeyakandan, A.K. Mobiya and G. Selvam, Int. J. PharmTech Res., 3, 386 (2011).
S. Au, J. Schacht and N. Weiner, Biomembranes, 862, 205 (1986); https://doi.org/10.1016/0005-2736(86)90484-0
S.T. Nguyen, J.D. Williams, M.M. Butler, X. Ding, D.M. Mills, T.F. Tashjian, R.G. Panchal, S.K. Weir, C. Moon, H.O. Kim, J.A. Marsden, N.P. Peet and T.L. Bowlin, Bioorg. Med. Chem. Lett., 24, 3366 (2014); https://doi.org/10.1016/j.bmcl.2014.05.094
R. Musiol, M. Serda, S.P. Hensel-Bielowka and J. Polanski, J. Curr. Med. Chem., 17, 1960 (2010); https://doi.org/10.2174/092986710791163966
J.P. Kleim, R. Bender, U.M. Billhardt, C. Meichsner, G. Riess, M. Rosner, I. Winkler and A. Paessens, Antimicrob. Agents Chemother., 37, 1659 (1993); https://doi.org/10.1128/AAC.37.8.1659
M. Suresh, P. Lavanya, D. Sudhakar, K. Vasu and C.V. Rao, J. Chem. Pharm. Res., 2, 497 (2010).
V.K. Tandon, D.B. Yadav, H.K. Maurya, A.K. Chaturvedi and P.K. Shukla, Bioorg. Med. Chem., 14, 6120 (2006); https://doi.org/10.1016/j.bmc.2006.04.029.
B. Zarranz, A.A. Jaso, I. Aldana and A. Monge, Bioorg. Med. Chem., 11, 2149 (2003); https://doi.org/10.1016/S0968-0896(03)00119-6.
M.M. Badran, A.A. Moneer, H.M. Refaat and A.A. El-Malah, J. Chin. Chem. Soc., 54, 469 (2007); https://doi.org/10.1002/jccs.200700066.
B. Solano, V. Junnotula, A. Marin, R. Villar, A. Burguete, E. Vicente, S. Perez-Silanes, I. Aldana, A. Monge, S. Dutta, U. Sarkar and K.S. Gates, J. Med. Chem., 50, 5485 (2007); https://doi.org/10.1021/jm0703993.
G. Olayiwola, C.A. Obafemi and F.O. Taiwo, Afr. J. Biotechnol., 6, 777 (2007).
A. Wadood, N. Ahmed, L. Shah, A. Ahmad, H. Hassan and S. Shams, Drug Des. Devel. Ther., 1, 3 (2013).
E. Krovat, T. Steindl and T. Langer, Curr. Comp-Aid. Drug Des., 1, 93 (2005); https://doi.org/10.2174/1573409052952314.
V. Alcolea, D. Plano, D.N. Karelia, J.A. Palop, S. Amin, C. Sanmartín and A.K. Sharma, Eur. J. Med. Chem., 113, 134 (2016); https://doi.org/10.1016/j.ejmech.2016.02.042.
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O.
Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski and D.J. Fox, Gaussian, Inc., Wallingford CT (2009).
K.R. Cousins, J. Am. Soc., 133, 8388 (2011); https://doi.org/10.1021/ja204075s
E. Frich, H. P. Hratchian, R. D. Dennington II, T. A. Keith, John Millam, B. Nielsen, A. J. Holder, J. Hiscocks. Gaussian. Inc. GaussView Version 5.0.8 (2009).
M.H. Jamroz, Vibrational Energy Distribution Analysis: VEDA 4 Program, Warsaw, Poland (2004).
M.J. Frisch, J.A. Pople and J.S. Binkley, J. Chem. Phys., 80, 3265 (1984); https://doi.org/10.1063/1.447079
R. Ditchfield, Mol. Phys., 27, 789 (1974); https://doi.org/10.1080/00268977400100711
N.M. O’boyle, A.L. Tenderholt and K.M. Langner, J. Comput. Chem., 29, 839 (2008); https://doi.org/10.1002/jcc.20823
A. Kumar, A. Pandey and A. Mishra, J. Biol. Chem. Res., 36, 1 (2019).
A.D. Bochevarov, E. Harder, T.F. Hughes, J.R. Greenwood, D.A. Braden, D.M. Philipp, D. Rinaldo, M.D. Halls, J. Zhang and R.A. Friesner, Int. J. Quant. Chem., 113, 2110 (2013); https://doi.org/10.1002/qua.24481
A. Pandey, A. Kumar and A. Mishra, J. Biol. Chem. Res., 36, 102 (2019).
A. Pandey, A. Kumar and A. Mishra, Int. J. Sci. Res. Rev., 8, 2087 (2019). 35. http://www.molinspiration.com.
http://www.swissadme.ch/index.php.
www.molsoft.com/cgi-bin/msearch.cgi.
http://tox.charite.de/protox_II/.
R. Thomsen and M.H. Christensen, J. Med. Chem., 49, 3315 (2006); https://doi.org/10.1021/jm051197e
A. Gupta, P. Sharma and B. Jayaram, Protein Pept. Lett., 14, 632 (2007); https://doi.org/10.2174/092986607781483831
I. Fleming, Frontier Orbitals and Organic Chemical Reactions, Wiley: London (1976).
A.M. Asiri, M. Karabacak, M. Kurt and K.A. Alamry, Spectrochim. Acta A Mol. Biomol. Spectrosc., 82, 444 (2011); https://doi.org/10.1016/j.saa.2011.07.076
B. Kosar and C. Albayrak, Spectrochim. Acta A Mol. Biomol. Spectrosc., 78, 160 (2011); https://doi.org/10.1016/j.saa.2010.09.016
Y.N. Mabkhot, F.D. Aldawsari, S.S. Al-Showiman, A. Barakat, S.M. Soliman, M.I. Choudhary, S. Yousuf, M.S. Mubarak and T.B. Hadda, Chem. Cent. J., 9, 24 (2015); https://doi.org/10.1186/s13065-015-0100-9
S. Suganthi, P. Balu, V. Sathyanarayanamoorthi, V. Kannappan, M. G. Mohamed Kamil, R. Kumar, J. Mol. Struct., 1108, 1 (2016); https://doi.org/10.1016/j.molstruc.2015.11.069
R.G. Parr, L.V. Szentpaly and S. Liu, J. Am. Chem. Soc., 121, 1922 (1999); https://doi.org/10.1021/ja983494x
O. Tamer, B. Sariboga and I. Uçar, Struct. Chem., 23, 659 (2012); https://doi.org/10.1007/s11224-011-9910-0
E. Scrocco and J. Tomasi, Adv. Quantum Chem., 11, 115 (1978); https://doi.org/10.1016/S0065-3276(08)60236-1
F.J. Luque, J.M. Lopez and M. Orozco, Theor. Chem. Acc., 103, 343 (2000); https://doi.org/10.1007/s002149900013
G. Schneider, Prediction of Drug-Like Properties, In: Madame Curie Bioscience Database, Landes Bioscience: Austin (TX) (2000-2013).
J.C. Adams, M.J. Keiser, L. Basuino, H.F. Chambers, D.-S. Lee, O.G. Wiest and P.C. Babbitt PLoS Comput. Biol., 5, e1000474 (2009) https://doi.org/10.1371/journal.pcbi.1000474
J.M. Seminario, Molecular Electrostatic Potentials, Concepts and Applications, Elsevier: Amsterdam (1996).
P.W. Ayers and R.G. Parr, J. Am. Chem. Soc., 122, 2010 (2000); https://doi.org/10.1021/ja9924039
R.G. Parr and W.J. Yang, Am. Chem. Soc., 106, 4049 (1984); https://doi.org/10.1021/ja00326a036
W. Yang and W.J.J. Mortier, J. Am. Chem. Soc., 108, 5708 (1986); https://doi.org/10.1021/ja00279a008
R.K. Roy, S. Krishnamurti, P. Geerlings and S. Pal, J. Phys. Chem. A, 102, 3746 (1998); https://doi.org/10.1021/jp973450v
P.K. Chattaraj, B. Maiti and U. Sarkar, J. Phys. Chem. A, 107, 4973 (2003); https://doi.org/10.1021/jp034707u
M. Govindarajan, M. Karabacak, S. Periandy and D. Tanuja, Spectrochim. Acta A Mol. Biomol. Spectrosc., 97, 231 (2012); https://doi.org/10.1016/j.saa.2012.06.014
R.S. Mulliken, J. Chem. Phys., 23, 1833 (1955); https://doi.org/10.1063/1.1740588
E.R. Davidson and S. Chakravorty, Theor. Chim. Acta, 83, 319 (1992); https://doi.org/10.1007/BF01113058
M.D. Segall, C.J. Pickard, R. Shah and M.C. Payne, Mol. Phys., 89, 571 (1996); https://doi.org/10.1080/002689796173912
R.M. Silverstein, G.C. Basseler and C. Morill, Spectroscopic Identification of Organic Compounds, Wiley, New York (1981).
R. Shunmugam and D.N. Sathyanarayana, Spectrochim. Acta A Mol.. Spectrosc., 40, 757 (1984); https://doi.org/10.1016/0584-8539(84)80100-2
A.R. Prabhakaran and S. Mohan, Indian J. Phys., 63B, 468 (1989).
R.M. Silverstein, F.X. Webster and D. Kiemle, Spectrometric Identification of Organic Compounds, John Wiley & ons Inc., edn 2 (2005).
M. Karabacak, C. Karaca, A. Atac, M. Eskici, A. Karanfil and E. Kose, Spectrochim. Acta A Mol. Biomol. Spectrosc., 97, 556 (2012); https://doi.org/10.1016/j.saa.2012.05.087
D. Sajan, H. Joe, V.S. Jayakumar and J. Zaleski, J. Mol. Struct., 785, 43 (2006); https://doi.org/10.1016/j.molstruc.2005.09.041
V.M. Geskin, C. Lambert and J.-L. Brédas, J. Am. Chem. Soc., 125, 15651 (2003); https://doi.org/10.1021/ja035862p
R. Zhang, B. Du, G. Sun and Y. Sun, Spectrochim. Acta A Mol. Biomol. Spectrosc., 75, 1115 (2010); https://doi.org/10.1016/j.saa.2009.12.067
A. Verma, Asian Pac. J. Trop. Biomed., 2, S1735 (2012); https://doi.org/10.1016/S2221-1691(12)60486-9
C.A. Lipinski, F. Lombardo, B.W. Dominy and P.J. Feeney, Adv. Drug Deliv. Rev., 46, 3 (2001); https://doi.org/10.1016/S0169-409X(00)00129-0
P. Ertl, B. Rohde and P. Selzer, J. Med. Chem., 43, 3714 (2000); https://doi.org/10.1021/jm000942e
N. Roy and R.U. Kadam, Indian J. Pharm. Sci., 69, 609 (2007); https://doi.org/10.4103/0250-474X.38464
A.K. Ghose, T. Herbertz, R.L. Hudkins, B.D. Dorsey and J.P. Mallamo, ACS Chem. Neurosci., 3, 50 (2012); https://doi.org/10.1021/cn200100h
D.E. Pires, T.L. Blundell and D.B. Ascher, J. Med. Chem., 58, 4066 (2015); https://doi.org/10.1021/acs.jmedchem.5b00104
A. Daina and V. Zoete, ChemMedChem, 11, 1117 (2016); https://doi.org/10.1002/cmdc.201600182
F. Yamashita and M. Hashida, Drug. Metab. Pharm., 19, 327 (2004); https://doi.org/10.2133/dmpk.19.327
F.J. Azeredo, F.T. Uchoa and T.D. Costa, Rev. Bras. Farm., 90, 321 (2009).
B.N. Ames, E.G. Gurney, J.A. Miller and H. Bartsch, Proc. Natl. Acad. Sci. USA, 69, 3128 (1972); https://doi.org/10.1073/pnas.69.11.3128
M.N. Drwal, P. Banerjee, M. Dunkel, M.R. Wettig and R. Preissner, Nucleic Acids Res., 42(W1), W53 (2014); https://doi.org/10.1093/nar/gku401
F. Ntie-Kang, L.L. Lifongo, J.A. Mbah, L.C. Owono Owono, E. Megnassan, L.M. Mbaze, P.N. Judson, W. Sippl and S.M.N. Efange, In Silico Pharmacol., 1, 12 (2013); https://doi.org/10.1186/2193-9616-1-12
J.R. Miller, S. Dunham, I. Mochalkin, C. Banotai, M. Bowman, S. Buist, B. Dunkle, D. Hanna, H.J. Harwood, M.D. Huband, A. Karnovsky, M. Kuhn, C. Limberakis, J.Y. Liu, S. Mehrens, W.T. Mueller, L. Narasimhan, A. Ogden, J. Ohren, J.V.N.V. Prasad, J.A. Shelly, L. Skerlos, M. Sulavik, V.H. Thomas, S. Vander Roest, L.A. Wang, Z. Wang, A. Whitton, T. Zhu and C.K. Stover, Proc. Natl. Acad. Sci. USA, 106, 1737 (2009); https://doi.org/10.1073/pnas.0811275106
S. Velankar, P. McNeil, V. Mittard-Runte, A. Suarez, D. Barrell, R. Apweiler and K. Henrick, Nucleic Acids Res., 33, D262 (2004); https://doi.org/10.1093/nar/gki058