Synthesis, Crystal Structure and Hirshfeld Surface Analysis of 3,14-Dimethyl-2,6,13,17-tetraazatricyclo(16.4.0.07,12)docosane-2-(nitric acid)
Corresponding Author(s) : Jong-Ha Choi
Asian Journal of Chemistry,
Vol. 32 No. 3 (2020): Vol 32 Issue 3 page 697-702
Abstract
The crystal structure of 3,14-dimethyl-2,6,13,17-tetraazatricyclo(16.4.0.07,12)docosane-2-(nitric acid), C20H40N4·2(NO2OH) had been determined using synchrotron radiation at 220 K. The compound crystallized in the space group P21/n of the monoclinic system with two mononuclear formula units in a cell of dimensions a = 9.1930(18), b = 10.120(2), c = 12.979(3) Å and β = 101.06(3)º. The asymmetric unit contains half a centrosymmetric macrocycle and one nitric acid molecule. There were two molecules in the unit cell. In structure of macrocycle, C-C and N-C bond lengths were in the range 1.5198(19) to 1.5367(18) Å and 1.4744(16) to 1.4986 (16) Å, respectively. The NO2OH group has one longer N-O bond of 1.3441(18) Å and two shorter N-O bond of 1.2509(19) Å and 1.2510(19) Å, and O-N-O angles of 126.31(14)º, 117.98(14)º and 115.71(14)º. The N-H···O and N-H···N hydrogen bonds interconnect macrocycle (C20H40N4) with nitric acid molecules while two O-H···O hydrogen bonds link the nitric acid molecule to neighboring nitric acid molecule each other. The molecule was stabilized by forming intermolecular N-H···O, N-H−N and O-H···O hydrogen bonds. Hirshfeld surface analysis by 3D molecular surface contours and 2D fingerprint plots have been used to analyze intermolecular interactions present in the crystal.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- G.C. Valks, G. McRobbie, E.A. Lewis, T.J. Hubin, T.M. Hunter, P.J. Sadler, C. Pannecouque, E. De Clercq and S.J. Archibald, J. Med. Chem., 49, 6162 (2006); https://doi.org/10.1021/jm0607810
- L. Ronconi and P.J. Sadler, Coord. Chem. Rev., 251, 1633 (2007); https://doi.org/10.1016/j.ccr.2006.11.017
- E. De Clercq, J. Med. Chem., 53, 1438 (2010); https://doi.org/10.1021/jm900932g
- J.-H. Choi, Inorg. Chim. Acta, 362, 4231 (2009); https://doi.org/10.1016/j.ica.2009.05.024
- M.A. Subhan, J.-H. Choi and S.W. Ng, Z. Anorg. Allg. Chem., 637, 2193 (2011); https://doi.org/10.1002/zaac.201100423
- J. Moncol, M. Mazúr, M. Valko, K.S. Ryoo and J.-H. Choi, J. Mol. Struct., 1202, 127224 (2020); https://doi.org/10.1016/j.molstruc.2019.127224
- J.-H. Choi, T. Suzuki and S. Kaizaki, Acta Crystallogr. E, 62, m2383 (2006); https://doi.org/10.1107/S1600536806034234
- J.-H. Choi, K.S. Ryoo and K.-M. Park, Acta Crystallogr. E, 63, m2674 (2007); https://doi.org/10.1107/S1600536807048039
- J.-H. Choi, T. Joshi and L. Spiccia, Z. Anorg. Allg. Chem., 638, 146 (2012); https://doi.org/10.1002/zaac.201100398
- J.-H. Choi, M.A. Subhan and S.W. Ng, Acta Crystallogr. E, 68, m190 (2012); https://doi.org/10.1107/S1600536812001845
- A. Ross, J.-H. Choi, T.M. Hunter, C. Pannecouque, S.A. Moggach, S. Parsons, E. De Clercq and P.J. Sadler, Dalton Trans., 41, 6408 (2012); https://doi.org/10.1039/c2dt30140g
- J.-H. Choi, M.A. Subhan, K.S. Ryoo and S.W. Ng, Acta Crystallogr. E, 68, o102 (2012); https://doi.org/10.1107/S160053681105272X
- F. White, P.J. Sadler and M. Melchart, CSD Communication CCDC 1408165 (2015).
- G.B. Richter-Addo, Acta Crystallogr. E, 74, 1039 (2018); https://doi.org/10.1107/S2059798318014997
- M.D. Moran, D.S. Brock, H.P.A. Mercier and G.J. Schrobilgen, J. Am. Chem. Soc., 132, 13823 (2010); https://doi.org/10.1021/ja105618w
- J.W. Shin, K. Eom and D. Moon, J. Synchrotron Rad., 23, 369 (2016); https://doi.org/10.1107/S1600577515021633
- Z. Otwinowski and W. Minor, eds., C.W. Carter Jr. and R.M. Sweet, Methods in Enzymology, Academic Press: New York, vol. 276, Macromolecular Crystallography, Part A, p. 307 (1997).
- G.M. Sheldrick, Acta Crystallogr. A, 71, 3 (2015); https://doi.org/10.1107/S2053273314026370
- K. Brandenburg and H. Putz, DIAMOND-3, University of Bonn, Bonn Germany (2014).
- D. Moon and J.-H. Choi, Acta Crystallogr. E, 74, 461 (2018); https://doi.org/10.1107/S2056989018003560
- M.A. Spackman and D. Jayatilaka, CrystEngComm, 11, 19 (2009); https://doi.org/10.1039/B818330A
- M.J. Turner, J.J. McKinnon, S.K. Wolff, D.J. Grimwood, P.R. Spackman, D. Jayatilaka and M.A. Spackman, CrystalExplorer17, University of Western Australia (2017).
- M.A. Spackman and J.J. McKinnon, CrystEngComm, 4, 378 (2002); https://doi.org/10.1039/B203191B
- D. Moon, S. Tanaka, T. Akitsu and J.-H. Choi, J. Mol. Struct., 1154, 338 (2018); https://doi.org/10.1016/j.molstruc.2017.10.066.
- T. Aree, Y.P. Hong and J.-H. Choi, J. Mol. Struct., 1163, 86 (2018); https://doi.org/10.1016/j.molstruc.2018.02.102
- S. Jeon, J. Moncol, M. Mazúr, M. Valko and J.-H. Choi, Crystals, 9, 336 (2019); https://doi.org/10.3390/cryst9070336
- J. Moncol, M. Mazúr, M. Valko and J.-H. Choi, Acta Crystallogr. C, 75, 616 (2019); https://doi.org/10.1107/S2053229619005588
- J.J. McKinnon, D. Jayatilaka and M.A. Spackman, Chem. Commun., 3814 (2007); https://doi.org/10.1039/b704980c