Copyright (c) 2020 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis, Characterization, Stability and Cytotoxic Evaluation of Novel Titanium(IV) Complexes of 8-Hydroxyquinoline and 2-Hydroxy-N-phenylbenzylamine Derivatives
Corresponding Author(s) : Blassan Samuel
Asian Journal of Chemistry,
Vol. 32 No. 3 (2020): Vol 32 Issue 3
Abstract
A new class of moisture stable heteroleptic titanium(IV) complexes, synthesized from 8-hydroxyquinoline of the type [(Q)2Ti(2-O-5-X-C6H3CH2NC6H4R] (3a-j), was prepared by reacting the antecedent molecule [(Q2)Ti(OiPr)2] (2) with various 2-hydroxy-N-phenyl-benzylamine analogues in 1:1 molar ratios in dry toluene (where, HQ = 8-hydroxyquinoline; iPr = isopropyl; R = H, 4-CH3, 4-OCH3, 2-Cl, 4-Cl, 2-Br, 4-Br; X= H, Br). Moisture sensitive study disclosed that these new metal complexes were unreacted for 72 h. Mass spectral data were employed for proving the mono-nuclearity of the new derivatives. Thermal decomposition pattern of the new derivatives was explained by thermogravimetric analyses. Elemental analyses data are in concordance with their expected values. The hexa-coordinated way of titanium-ligand linkage is further proved through NMR, FTIR, and UV-visible spectral studies. The cytotoxic efficiency of new complexes was tested against MDA-MB-231 human breast carcinoma cell line. Complex 3a exhibited the highest cytotoxic potential of 0.039 μM in comparison to all its analogues of this series by employing cisplatin as the standard.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- F. Bray, J. Ferlay, I. Soerjomataram, R.L. Siegel, L.A. Torre and A. Jemal, CA Cancer J. Clin., 68, 394 (2018); https://doi.org/10.3322/caac.21492
- J. Ferlay, M. Colombet, I. Soerjomataram, T. Dyba, G. Randi, M. Bettio, A. Gavin, O. Visser and F. Bray, Eur. J. Cancer, 103, 356 (2018); https://doi.org/10.1016/j.ejca.2018.07.005
- U. Ndagi, N. Mhlongo and M.E. Soliman, Drug Des. Devel. Ther., 11, 599 (2017); https://doi.org/10.2147/DDDT.S119488
- Y. Ellahioui, S. Prashar and S. Gómez-Ruiz, Inorganics, 5, 4 (2017); https://doi.org/10.3390/inorganics5010004
- P. Koepf-Maier and H. Koepf, Chem. Rev., 87, 1137 (1987); https://doi.org/10.1021/cr00081a012
- H. Glasner and E.Y. Tshuva, Inorg. Chem. Commun., 53, 31 (2015); https://doi.org/10.1016/j.inoche.2015.01.019
- B.K. Keppler, C. Friesen, H.G. Moritz, H. Vongerichten and E. Vogel, Struct. Bonding, 78, 97 (1991); https://doi.org/10.1007/3-540-54261-2_2
- A. Tzubery, N. Melamed-Book and E.Y. Tshuva, Dalton Trans., 47, 3669 (2018); https://doi.org/10.1039/C7DT04828A.
- S. Meker, O. Braitbard, M.D. Hall, J. Hochman and E.Y. Tshuva, Chemistry, 22, 9849 (2016); https://doi.org/10.1002/chem.201602626
- M. Miller and E.Y. Tshuva, Sci. Rep., 8, 9705 (2018); https://doi.org/10.1038/s41598-018-27735-0
- E.Y. Tshuva and D. Peri, Coord. Chem. Rev., 253, 2098 (2009); https://doi.org/10.1016/j.ccr.2008.11.015
- J. Schur, C.M. Manna, A. Deally, R.W. Köster, M. Tacke, E.Y. Tshuva and I. Ott, Chem. Commun., 49, 4785 (2013); https://doi.org/10.1039/c3cc38604j
- W.F. Zeng, Y.S. Chen, M.Y. Chiang, S.S. Chern and C.P. Cheng, Polyhedron, 21, 1081 (2002); https://doi.org/10.1016/S0277-5387(02)00873-2
- W.F. Zeng, Y.H. Chen, M.Y. Chiang and C.P. Cheng, Polyhedron, 26, 1303 (2007); https://doi.org/10.1016/j.poly.2006.10.048
- R. Andreu and J.C. Ronda, Synth. Commun., 38, 2316 (2008); https://doi.org/10.1080/00397910802138629
- B. Samuel and M. Pathak, Asian J. Chem., 31, 1629 (2019); https://doi.org/10.14233/ajchem.2019.22120
- A.I. Vogel, A Textbook of Quantitative Inorganic Analysis, Longman: London, edn. 5, pp. 228-229 (1989).
- D.C. Bradley, F.M.A. Halim, R.C. Mehrotra and W. Wardlaw, J. Chem. Soc., 4609 (1952); https://doi.org/10.1039/JR9520004609
- N.D.R. Kumar, V.C. George, P.K. Suresh and R.A. Kumar, Asian J. Pharm. Clin. Res., 5, 189 (2012).
- O.S. Weislow, R. Kiser, D.L. Fine, J. Bader, R.H. Shoemaker and M.R. Boyd, J. Natl. Cancer Inst., 81, 577 (1989); https://doi.org/10.1093/jnci/81.8.577
- A. Obeid, A. El-Shekeil, S. Al-Aghbari and J. Al-Shabi, J. Coord. Chem., 65, 2762 (2012); https://doi.org/10.1080/00958972.2012.703780
- M.N. Uddin, D.A. Chowdhury and K. Hossain, J. Chin. Chem. Soc., 59, 1520 (2012); https://doi.org/10.1002/jccs.201200169
- H.A.R. Pramanik, D. Das, P.C. Paul, P. Mondal and C.R. Bhattacharjee, J. Mol. Struct., 1059, 309 (2014); https://doi.org/10.1016/j.molstruc.2013.12.009
- S.A. Sadeek, W.H. Elshwiniy and M.S. Elattar, Spectrochim. Acta A Mol. Biomol. Spectrosc., 84, 99 (2011); https://doi.org/10.1016/j.saa.2011.09.010
- N.C. Campanella, M.S. Demartini, C. Torres, E.T. Almeida and C.M.C.P. Gouvea, Genet. Mol. Biol., 35, 159 (2012); https://doi.org/10.1590/S1415-47572012005000016
References
F. Bray, J. Ferlay, I. Soerjomataram, R.L. Siegel, L.A. Torre and A. Jemal, CA Cancer J. Clin., 68, 394 (2018); https://doi.org/10.3322/caac.21492
J. Ferlay, M. Colombet, I. Soerjomataram, T. Dyba, G. Randi, M. Bettio, A. Gavin, O. Visser and F. Bray, Eur. J. Cancer, 103, 356 (2018); https://doi.org/10.1016/j.ejca.2018.07.005
U. Ndagi, N. Mhlongo and M.E. Soliman, Drug Des. Devel. Ther., 11, 599 (2017); https://doi.org/10.2147/DDDT.S119488
Y. Ellahioui, S. Prashar and S. Gómez-Ruiz, Inorganics, 5, 4 (2017); https://doi.org/10.3390/inorganics5010004
P. Koepf-Maier and H. Koepf, Chem. Rev., 87, 1137 (1987); https://doi.org/10.1021/cr00081a012
H. Glasner and E.Y. Tshuva, Inorg. Chem. Commun., 53, 31 (2015); https://doi.org/10.1016/j.inoche.2015.01.019
B.K. Keppler, C. Friesen, H.G. Moritz, H. Vongerichten and E. Vogel, Struct. Bonding, 78, 97 (1991); https://doi.org/10.1007/3-540-54261-2_2
A. Tzubery, N. Melamed-Book and E.Y. Tshuva, Dalton Trans., 47, 3669 (2018); https://doi.org/10.1039/C7DT04828A.
S. Meker, O. Braitbard, M.D. Hall, J. Hochman and E.Y. Tshuva, Chemistry, 22, 9849 (2016); https://doi.org/10.1002/chem.201602626
M. Miller and E.Y. Tshuva, Sci. Rep., 8, 9705 (2018); https://doi.org/10.1038/s41598-018-27735-0
E.Y. Tshuva and D. Peri, Coord. Chem. Rev., 253, 2098 (2009); https://doi.org/10.1016/j.ccr.2008.11.015
J. Schur, C.M. Manna, A. Deally, R.W. Köster, M. Tacke, E.Y. Tshuva and I. Ott, Chem. Commun., 49, 4785 (2013); https://doi.org/10.1039/c3cc38604j
W.F. Zeng, Y.S. Chen, M.Y. Chiang, S.S. Chern and C.P. Cheng, Polyhedron, 21, 1081 (2002); https://doi.org/10.1016/S0277-5387(02)00873-2
W.F. Zeng, Y.H. Chen, M.Y. Chiang and C.P. Cheng, Polyhedron, 26, 1303 (2007); https://doi.org/10.1016/j.poly.2006.10.048
R. Andreu and J.C. Ronda, Synth. Commun., 38, 2316 (2008); https://doi.org/10.1080/00397910802138629
B. Samuel and M. Pathak, Asian J. Chem., 31, 1629 (2019); https://doi.org/10.14233/ajchem.2019.22120
A.I. Vogel, A Textbook of Quantitative Inorganic Analysis, Longman: London, edn. 5, pp. 228-229 (1989).
D.C. Bradley, F.M.A. Halim, R.C. Mehrotra and W. Wardlaw, J. Chem. Soc., 4609 (1952); https://doi.org/10.1039/JR9520004609
N.D.R. Kumar, V.C. George, P.K. Suresh and R.A. Kumar, Asian J. Pharm. Clin. Res., 5, 189 (2012).
O.S. Weislow, R. Kiser, D.L. Fine, J. Bader, R.H. Shoemaker and M.R. Boyd, J. Natl. Cancer Inst., 81, 577 (1989); https://doi.org/10.1093/jnci/81.8.577
A. Obeid, A. El-Shekeil, S. Al-Aghbari and J. Al-Shabi, J. Coord. Chem., 65, 2762 (2012); https://doi.org/10.1080/00958972.2012.703780
M.N. Uddin, D.A. Chowdhury and K. Hossain, J. Chin. Chem. Soc., 59, 1520 (2012); https://doi.org/10.1002/jccs.201200169
H.A.R. Pramanik, D. Das, P.C. Paul, P. Mondal and C.R. Bhattacharjee, J. Mol. Struct., 1059, 309 (2014); https://doi.org/10.1016/j.molstruc.2013.12.009
S.A. Sadeek, W.H. Elshwiniy and M.S. Elattar, Spectrochim. Acta A Mol. Biomol. Spectrosc., 84, 99 (2011); https://doi.org/10.1016/j.saa.2011.09.010
N.C. Campanella, M.S. Demartini, C. Torres, E.T. Almeida and C.M.C.P. Gouvea, Genet. Mol. Biol., 35, 159 (2012); https://doi.org/10.1590/S1415-47572012005000016