Copyright (c) 2020 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis of Horseradish Peroxidase-Gold Nanoparticle Conjugate through Green Route
Corresponding Author(s) : Rachana Sahney
Asian Journal of Chemistry,
Vol. 32 No. 5 (2020): Vol 32 Issue 5
Abstract
Synthesis of horseradish peroxidase-gold nanoparticle conjugates (HRP-AuNPs) has been studied for the development of biofunctionalized gold nanoparticles (AuNPs) through biogenic route. Herein, horseradish peroxidase enzyme has been used to synthesize gold nanoparticles at room temperature in tricine buffer. The morphology and size distribution of HRP-AuNPs conjugates were obtained by different techniques including dynamic light scattering (DLS), UV-visible (UV-vis) spectrophotometry, scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX). The enzyme activity of HRP-AuNP conjugate was compared with free enzyme to determine their catalytic efficiency. The results suggests that HRP-AuNP conjugates are monodisperse particles with average hydrodynamic diameter of 83.93 ± 2.1 nm, zeta potential of about -18.4 ± 1.1 mV and higher enzyme activity towards H2O2 as compared to free horseradish peroxidase. These biofunctionalized gold nanoparticles could act as tag or labeling agent for various applications.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- W.R. Glomm, J. Dispers. Sci. Technol., 26, 389 (2005); https://doi.org/10.1081/DIS-200052457
- R.A. Sperling, P. Rivera Gil, F. Zhang, M. Zanella and W.J. Parak, Chem. Soc. Rev., 37, 1896 (2008); https://doi.org/10.1039/b712170a
- P. Tiwari, K. Vig, V. Dennis and S. Singh, Nanomaterials, 1, 31 (2011); https://doi.org/10.3390/nano1010031
- X. Huang, P.K. Jain, I.H. El-Sayed and M.A. El-Sayed, Lasers Med. Sci., 23, 217 (2008); https://doi.org/10.1007/s10103-007-0470-x
- K. Saha, S.S. Agasti, C. Kim, X. Li and V.M. Rotello, Chem. Rev., 112, 2739 (2012); https://doi.org/10.1021/cr2001178
- D.A. Giljohann, D.S. Seferos, W.L. Daniel, M.D. Massich, P.C. Patel and C.A. Mirkin, Angew. Chem. Int. Ed., 49, 3280 (2010); https://doi.org/10.1002/anie.200904359
- B. Sepúlveda, P.C. Angelomé, L.M. Lechuga and L.M. Liz-Marzán, Nano Today, 4, 244 (2009); https://doi.org/10.1016/j.nantod.2009.04.001
- M. Fan, G.F. Andrade and A.G. Brolo, Anal. Chim. Acta, 693, 7 (2011); https://doi.org/10.1016/j.aca.2011.03.002
- S. Maldonado, D. Knapp and N.S. Lewis, J. Am. Chem. Soc., 130, 3300 (2008); https://doi.org/10.1021/ja800603v
- M. Sengani, A.M. Grumezescu and V.D. Rajeswari, OpenNano, 2, 37 (2017); https://doi.org/10.1016/j.onano.2017.07.001
- N. Elahi, M. Kamali and M.H. Baghersad, Talanta, 184, 537 (2018); https://doi.org/10.1016/j.talanta.2018.02.088
- J. Turkevich, P.C. Stevenson and J. Hillier, Discuss. Faraday Soc., 11, 55 (1951); https://doi.org/10.1039/df9511100055
- G.K. Devi, P. Suruthi, R. Veerakumar, S. Vinoth, R. Subbaiya and S. Chozhavendhan, Res. J. Pharm. Technol., 12, 935 (2019); https://doi.org/10.5958/0974-360X.2019.00158.6
- G.A. Filip, B. Moldovan, I. Baldea, D. Olteanu, R. Suharoschi, N. Decea, C.M. Cismaru, E. Gal, M. Cenariu, S. Clichici and L. David, J. Photochem. Photobiol. B, 191, 26 (2019); https://doi.org/10.1016/j.jphotobiol.2018.12.006
- M. Zou, J. Li, F. Zhang and Y. Jin, Anal. Lett., 43, 867 (2010); https://doi.org/10.1080/00032710903486336
- L. Wang, Y. Liu, W. Li, X. Jiang, Y. Ji, X. Wu, L. Xu, Y. Qiu, K. Zhao, T. Wei, Y. Li, Y. Zhao and C. Chen, Nano Lett., 11, 772 (2011); https://doi.org/10.1021/nl103992v
- S. Menon, R. S and V.K. S, Resour.-Effic. Technol., 3, 516 (2017); https://doi.org/10.1016/j.reffit.2017.08.002
- J.M. Slocik, R.R. Naik, M.O. Stone and D.W. Wright, J. Mater. Chem., 15, 749 (2005); https://doi.org/10.1039/b413074j
- Z. Vaseghi, A. Nematollahzadeh and O. Tavakoli, Rev. Chem. Eng., 34, 529 (2018); https://doi.org/10.1515/revce-2017-0005
- N. Noah, eds.: A.K. Shukla and S. Iravani, Green Synthesis: Characterization and Application of Silver and Gold Nanoparticles; In: Green Synthesis, Characterization and Applications of Nanoparticles, Elsevier, Chap. 6, pp. 111-135 (2019).
- S. Samanta, S. Agarwal, K.K. Nair, R.A. Harris and H. Swart, Mater. Res. Express, 6, 082009 (2019); https://doi.org/10.1088/2053-1591/ab296b
- H.K. Daima, P. Selvakannan, Z. Homan, S.K. Bhargava and V. Bansal, Tyrosine Mediated Gold, Silver and Their Alloy Nanoparticles Synthesis: Antibacterial Activity Toward Gram Positive and Gram Negative Bacterial Strains; In: Nanoscience, Technology and Societal Implications (NSTSI), International Conference On IEEE (2011).
- Z. Wang, J. Zhang, J.M. Ekman, P.J. Kenis and Y. Lu, Nano Lett., 10, 1886 (2010); https://doi.org/10.1021/nl100675p
- H. Wei, Z. Wang, J. Zhang, S. House, Y.-G. Gao, L. Yang, H. Robinson, L.H. Tan, H. Xing, C. Hou, I.M. Robertson, J.-M. Zuo and Y. Lu, Nat. Nanotechnol., 6, 93 (2011); https://doi.org/10.1038/nnano.2010.280
- C.M. Niemeyer, Angew. Chem. Int. Ed., 40, 4128 (2001); https://doi.org/10.1002/1521-3773(20011119)40:22<4128::AIDANIE4128>3.0.CO;2-S
- L. Rodríguez-Lorenzo, R. De La Rica, R.A. Álvarez-Puebla, L.M. LizMarzán and M.M. Stevens, Nat. Mater., 11, 604 (2012); https://doi.org/10.1038/nmat3337
- M. Sardar and J.A. Mazumder, eds.: N. Dasgupta, S. Ranjan and E. Lichtfouse, Biomolecules Assisted Synthesis of Metal Nanoparticles, in Environmental Nanotechnology, Springer International Publishing: Cham. vol. 2, p. 1-23 (2019).
- W. da Silva, M.E. Ghica, R.F. Ajayi, E.I. Iwuoha and C.M. Brett, Food Chem., 282, 18 (2019); https://doi.org/10.1016/j.foodchem.2018.12.104
- M. Peixoto de Almeida, P. Quaresma, S. Sousa, C. Couto, I. Gomes, L. Krippahl, R. Franco and E. Pereira, Phys. Chem. Chem. Phys., 20, 16761 (2018); https://doi.org/10.1039/C8CP03116A
- I. Khan, R. Nagarjuna, J.R. Dutta and R. Ganesan, Appl. Nanosci., 9, 1101 (2018); https://doi.org/10.1007/s13204-018-0735-7
- M.A. Faramarzi and H. Forootanfar, Colloids Surf. B Biointerfaces, 87, 23 (2011); https://doi.org/10.1016/j.colsurfb.2011.04.022
- L. Li and J. Weng, Nanotechnology, 21, 305603 (2010); https://doi.org/10.1088/0957-4484/21/30/305603
- K. Govindaraju, V. Kiruthiga, R. Manikandan, T. Ashokkumar and G. Singaravelu, Mater. Lett., 65, 256 (2011); https://doi.org/10.1016/j.matlet.2010.09.078
- H. Kawasaki, K. Hamaguchi, I. Osaka and R. Arakawa, Adv. Funct. Mater., 21, 3508 (2011); https://doi.org/10.1002/adfm.201100886
- P. Ravindra, Mater. Sci. Eng. B, 163, 93 (2009); https://doi.org/10.1016/j.mseb.2009.05.013
- S. Iravani, Green Chem., 13, 2638 (2011); https://doi.org/10.1039/c1gc15386b
- A. Rangnekar, T.K. Sarma, A.K. Singh, J. Deka, A. Ramesh and A. Chattopadhyay, Langmuir, 23, 5700 (2007); https://doi.org/10.1021/la062749e
- B. Sharma, S. Mandani and T.K. Sarma, J. Mater. Chem. B Mater. Biol. Med., 2, 4072 (2014); https://doi.org/10.1039/C4TB00218K
- S.J. Lee, N. Scotti, N. Ravasio, I.S. Chung and H. Song, Cryst. Growth Des., 13, 4131 (2013); https://doi.org/10.1021/cg400949x
- P. Zhang, X.X. Yang, Y. Wang, N.W. Zhao, Z.H. Xiong and C.Z. Huang, Nanoscale, 6, 2261 (2014); https://doi.org/10.1039/C3NR05269A
- A. Muthurasu and V. Ganesh, RSC Adv., 6, 7212 (2016); https://doi.org/10.1039/C5RA22477B
- F. Wen, Y. Dong, L. Feng, S. Wang, S. Zhang and X. Zhang, Anal. Chem., 83, 1193 (2011); https://doi.org/10.1021/ac1031447
- M. Zayats, R. Baron, I. Popov and I. Willner, Nano Lett., 5, 21 (2005); https://doi.org/10.1021/nl048547p
- X. Xu, M.S. Han and C.A. Mirkin, Angew. Chem., 119, 3538 (2007); https://doi.org/10.1002/ange.200605249
- X. Xie, W. Xu and X. Liu, Acc. Chem. Res., 45, 1511 (2012); https://doi.org/10.1021/ar300044j
- J. Oishi, Y. Asami, T. Mori, J.H. Kang, M. Tanabe, T. Niidome and Y. Katayama, ChemBioChem, 8, 875 (2007); https://doi.org/10.1002/cbic.200700086
- D. Zhai, B. Liu, Y. Shi, L. Pan, Y. Wang, W. Li, R. Zhang and G. Yu, ACS Nano, 7, 3540 (2013); https://doi.org/10.1021/nn400482d
- L.M. Shannon, E. Kay and J.Y. Lew, J. Biol. Chem., 241, 2166 (1966).
- H. Jans, X. Liu, L. Austin, G. Maes and Q. Huo, Anal. Chem., 81, 9425 (2009); https://doi.org/10.1021/ac901822w
- W.-Y. Qiu, K. Wang, Y.-Y. Wang, Z.-C. Ding, L.-X. Wu, W.-D. Cai and J.-K. Yan, Int. J. Biol. Macromol., 106, 498 (2018); https://doi.org/10.1016/j.ijbiomac.2017.08.029
References
W.R. Glomm, J. Dispers. Sci. Technol., 26, 389 (2005); https://doi.org/10.1081/DIS-200052457
R.A. Sperling, P. Rivera Gil, F. Zhang, M. Zanella and W.J. Parak, Chem. Soc. Rev., 37, 1896 (2008); https://doi.org/10.1039/b712170a
P. Tiwari, K. Vig, V. Dennis and S. Singh, Nanomaterials, 1, 31 (2011); https://doi.org/10.3390/nano1010031
X. Huang, P.K. Jain, I.H. El-Sayed and M.A. El-Sayed, Lasers Med. Sci., 23, 217 (2008); https://doi.org/10.1007/s10103-007-0470-x
K. Saha, S.S. Agasti, C. Kim, X. Li and V.M. Rotello, Chem. Rev., 112, 2739 (2012); https://doi.org/10.1021/cr2001178
D.A. Giljohann, D.S. Seferos, W.L. Daniel, M.D. Massich, P.C. Patel and C.A. Mirkin, Angew. Chem. Int. Ed., 49, 3280 (2010); https://doi.org/10.1002/anie.200904359
B. Sepúlveda, P.C. Angelomé, L.M. Lechuga and L.M. Liz-Marzán, Nano Today, 4, 244 (2009); https://doi.org/10.1016/j.nantod.2009.04.001
M. Fan, G.F. Andrade and A.G. Brolo, Anal. Chim. Acta, 693, 7 (2011); https://doi.org/10.1016/j.aca.2011.03.002
S. Maldonado, D. Knapp and N.S. Lewis, J. Am. Chem. Soc., 130, 3300 (2008); https://doi.org/10.1021/ja800603v
M. Sengani, A.M. Grumezescu and V.D. Rajeswari, OpenNano, 2, 37 (2017); https://doi.org/10.1016/j.onano.2017.07.001
N. Elahi, M. Kamali and M.H. Baghersad, Talanta, 184, 537 (2018); https://doi.org/10.1016/j.talanta.2018.02.088
J. Turkevich, P.C. Stevenson and J. Hillier, Discuss. Faraday Soc., 11, 55 (1951); https://doi.org/10.1039/df9511100055
G.K. Devi, P. Suruthi, R. Veerakumar, S. Vinoth, R. Subbaiya and S. Chozhavendhan, Res. J. Pharm. Technol., 12, 935 (2019); https://doi.org/10.5958/0974-360X.2019.00158.6
G.A. Filip, B. Moldovan, I. Baldea, D. Olteanu, R. Suharoschi, N. Decea, C.M. Cismaru, E. Gal, M. Cenariu, S. Clichici and L. David, J. Photochem. Photobiol. B, 191, 26 (2019); https://doi.org/10.1016/j.jphotobiol.2018.12.006
M. Zou, J. Li, F. Zhang and Y. Jin, Anal. Lett., 43, 867 (2010); https://doi.org/10.1080/00032710903486336
L. Wang, Y. Liu, W. Li, X. Jiang, Y. Ji, X. Wu, L. Xu, Y. Qiu, K. Zhao, T. Wei, Y. Li, Y. Zhao and C. Chen, Nano Lett., 11, 772 (2011); https://doi.org/10.1021/nl103992v
S. Menon, R. S and V.K. S, Resour.-Effic. Technol., 3, 516 (2017); https://doi.org/10.1016/j.reffit.2017.08.002
J.M. Slocik, R.R. Naik, M.O. Stone and D.W. Wright, J. Mater. Chem., 15, 749 (2005); https://doi.org/10.1039/b413074j
Z. Vaseghi, A. Nematollahzadeh and O. Tavakoli, Rev. Chem. Eng., 34, 529 (2018); https://doi.org/10.1515/revce-2017-0005
N. Noah, eds.: A.K. Shukla and S. Iravani, Green Synthesis: Characterization and Application of Silver and Gold Nanoparticles; In: Green Synthesis, Characterization and Applications of Nanoparticles, Elsevier, Chap. 6, pp. 111-135 (2019).
S. Samanta, S. Agarwal, K.K. Nair, R.A. Harris and H. Swart, Mater. Res. Express, 6, 082009 (2019); https://doi.org/10.1088/2053-1591/ab296b
H.K. Daima, P. Selvakannan, Z. Homan, S.K. Bhargava and V. Bansal, Tyrosine Mediated Gold, Silver and Their Alloy Nanoparticles Synthesis: Antibacterial Activity Toward Gram Positive and Gram Negative Bacterial Strains; In: Nanoscience, Technology and Societal Implications (NSTSI), International Conference On IEEE (2011).
Z. Wang, J. Zhang, J.M. Ekman, P.J. Kenis and Y. Lu, Nano Lett., 10, 1886 (2010); https://doi.org/10.1021/nl100675p
H. Wei, Z. Wang, J. Zhang, S. House, Y.-G. Gao, L. Yang, H. Robinson, L.H. Tan, H. Xing, C. Hou, I.M. Robertson, J.-M. Zuo and Y. Lu, Nat. Nanotechnol., 6, 93 (2011); https://doi.org/10.1038/nnano.2010.280
C.M. Niemeyer, Angew. Chem. Int. Ed., 40, 4128 (2001); https://doi.org/10.1002/1521-3773(20011119)40:22<4128::AIDANIE4128>3.0.CO;2-S
L. Rodríguez-Lorenzo, R. De La Rica, R.A. Álvarez-Puebla, L.M. LizMarzán and M.M. Stevens, Nat. Mater., 11, 604 (2012); https://doi.org/10.1038/nmat3337
M. Sardar and J.A. Mazumder, eds.: N. Dasgupta, S. Ranjan and E. Lichtfouse, Biomolecules Assisted Synthesis of Metal Nanoparticles, in Environmental Nanotechnology, Springer International Publishing: Cham. vol. 2, p. 1-23 (2019).
W. da Silva, M.E. Ghica, R.F. Ajayi, E.I. Iwuoha and C.M. Brett, Food Chem., 282, 18 (2019); https://doi.org/10.1016/j.foodchem.2018.12.104
M. Peixoto de Almeida, P. Quaresma, S. Sousa, C. Couto, I. Gomes, L. Krippahl, R. Franco and E. Pereira, Phys. Chem. Chem. Phys., 20, 16761 (2018); https://doi.org/10.1039/C8CP03116A
I. Khan, R. Nagarjuna, J.R. Dutta and R. Ganesan, Appl. Nanosci., 9, 1101 (2018); https://doi.org/10.1007/s13204-018-0735-7
M.A. Faramarzi and H. Forootanfar, Colloids Surf. B Biointerfaces, 87, 23 (2011); https://doi.org/10.1016/j.colsurfb.2011.04.022
L. Li and J. Weng, Nanotechnology, 21, 305603 (2010); https://doi.org/10.1088/0957-4484/21/30/305603
K. Govindaraju, V. Kiruthiga, R. Manikandan, T. Ashokkumar and G. Singaravelu, Mater. Lett., 65, 256 (2011); https://doi.org/10.1016/j.matlet.2010.09.078
H. Kawasaki, K. Hamaguchi, I. Osaka and R. Arakawa, Adv. Funct. Mater., 21, 3508 (2011); https://doi.org/10.1002/adfm.201100886
P. Ravindra, Mater. Sci. Eng. B, 163, 93 (2009); https://doi.org/10.1016/j.mseb.2009.05.013
S. Iravani, Green Chem., 13, 2638 (2011); https://doi.org/10.1039/c1gc15386b
A. Rangnekar, T.K. Sarma, A.K. Singh, J. Deka, A. Ramesh and A. Chattopadhyay, Langmuir, 23, 5700 (2007); https://doi.org/10.1021/la062749e
B. Sharma, S. Mandani and T.K. Sarma, J. Mater. Chem. B Mater. Biol. Med., 2, 4072 (2014); https://doi.org/10.1039/C4TB00218K
S.J. Lee, N. Scotti, N. Ravasio, I.S. Chung and H. Song, Cryst. Growth Des., 13, 4131 (2013); https://doi.org/10.1021/cg400949x
P. Zhang, X.X. Yang, Y. Wang, N.W. Zhao, Z.H. Xiong and C.Z. Huang, Nanoscale, 6, 2261 (2014); https://doi.org/10.1039/C3NR05269A
A. Muthurasu and V. Ganesh, RSC Adv., 6, 7212 (2016); https://doi.org/10.1039/C5RA22477B
F. Wen, Y. Dong, L. Feng, S. Wang, S. Zhang and X. Zhang, Anal. Chem., 83, 1193 (2011); https://doi.org/10.1021/ac1031447
M. Zayats, R. Baron, I. Popov and I. Willner, Nano Lett., 5, 21 (2005); https://doi.org/10.1021/nl048547p
X. Xu, M.S. Han and C.A. Mirkin, Angew. Chem., 119, 3538 (2007); https://doi.org/10.1002/ange.200605249
X. Xie, W. Xu and X. Liu, Acc. Chem. Res., 45, 1511 (2012); https://doi.org/10.1021/ar300044j
J. Oishi, Y. Asami, T. Mori, J.H. Kang, M. Tanabe, T. Niidome and Y. Katayama, ChemBioChem, 8, 875 (2007); https://doi.org/10.1002/cbic.200700086
D. Zhai, B. Liu, Y. Shi, L. Pan, Y. Wang, W. Li, R. Zhang and G. Yu, ACS Nano, 7, 3540 (2013); https://doi.org/10.1021/nn400482d
L.M. Shannon, E. Kay and J.Y. Lew, J. Biol. Chem., 241, 2166 (1966).
H. Jans, X. Liu, L. Austin, G. Maes and Q. Huo, Anal. Chem., 81, 9425 (2009); https://doi.org/10.1021/ac901822w
W.-Y. Qiu, K. Wang, Y.-Y. Wang, Z.-C. Ding, L.-X. Wu, W.-D. Cai and J.-K. Yan, Int. J. Biol. Macromol., 106, 498 (2018); https://doi.org/10.1016/j.ijbiomac.2017.08.029