Copyright (c) 2020 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Theoretical Verification of Dielectric and Magnetic Properties of Polyaniline-Nickel Ferrite Nanocomposites Synthesized in Green Medium Extracted from the Fruit of Tamarindus indica
Corresponding Author(s) : K.H. Prema
Asian Journal of Chemistry,
Vol. 32 No. 3 (2020): Vol 32 Issue 3
Abstract
Nanocomposite materials of nickel ferrite incorporated polyaniline (PANI) have been synthesized via in situ oxidative polymerization technique in a green medium extracted from the fruit of plant Tamarindus indica. Synthesized particles were characterized by FT-IR spectroscopy, X-ray diffraction technique and scanning electron microscopy. Various samples of composites were prepared with 5, 10 and 15 g of filler nickel ferrite and the variation in dielectric permittivity is calculated by measuring the capacitance of the materials in various external frequency ranges from 100 Hz to 20 MHz. Experimental values of dielectric property are compared with theoretical values obtained from Maxwell-Wagner equation. The magnetic properties such as saturation magnetization (Ms), magnetic remanance (Mr) and coercivity (Hc) of the samples were analyzed by vibrating sample magnetometer (VSM). Retention of the magnetic filler in the PANI matrix is evaluated by comparing the experimental Ms values of the composites with the values computed from a theoretical linear equation. The experimental results were well fitted with the theoretical values and confirmed the synthesis of PANI-nickel ferrite composites with desired electrical and magnetic properties by varying the amount of components.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Stejskal and R.G. Gilbert, Pure Appl. Chem., 74, 857 (2002); https://doi.org/10.1351/pac200274050857
- S.B. Kondawar, A.I. Nandapure and B.I. Nandapure, J. Adv. Mater. Lett., 5, 339 (2014); https://doi.org/10.5185/amlett.2014.amwc.1035
- V.J. Babu, S. Vempati and S. Ramakrishna, Mater. Sci. Appl., 4, 1 (2013); https://doi.org/10.4236/msa.2013.41001
- Y. Li, H. Zhang, Y. Liu, Q. Wen and J. Li, Nanotechnology, 19, 105605 (2008); https://doi.org/10.1088/0957-4484/19/10/105605
- H.G. Taleghani, M. Aleahmad and H. Eisazadeh, World Appl. Sci. J., 6, 1607 (2009).
- J.C. Aphesteguy, P.G. Bercoff and S.E. Jacobo, Physica B, 398, 200 (2007); https://doi.org/10.1016/j.physb.2007.04.018
- G.D. Prasanna, H.S. Jayanna and V. Prasad, J. Appl. Polym. Sci., 120, 2856 (2011); https://doi.org/10.1002/app.33304
- C.B. Sridhar, J. Husain and M.A. Prasad, Int. J. Adv. Eng. Technol., 7, 532 (2014).
- E.E. Tanriverdi, A.T. Uzumcu, H. Kavas, A. Demir and A. Baykal, Nano-Micro Lett., 3, 99 (2011); https://doi.org/10.1007/BF03353658
- M. Khairy and M.E. Gouda, J. Adv. Res., 6, 555 (2015); https://doi.org/10.1016/j.jare.2014.01.009
- A.A. Syed and M.K. Dinesan, Talanta, 38, 815 (1991); https://doi.org/10.1016/0039-9140(91)80261-W
- J.-C. Chiang and A.G. MacDiarmid, Synth. Met., 13, 193 (1986); https://doi.org/10.1016/0379-6779(86)90070-6
- G.G. Wallace, P.R. Teasdale, G.M. Spinks and A.P. Leon, Kane-Maguire, Conductive Electroactive Polymers: Intelligent Polymer Systems, Taylor and Francis: Boca Raton, edn 3 (2008).
- A.G. MacDiarmid, J.C. Chiang, A.F. Richter and A.J. Epstein, Synth. Met., 18, 285 (1987); https://doi.org/10.1016/0379-6779(87)90893-9
- A.H. Elsayed, M.M. Eldin, A.M. Elsyed, A.A. Elazm, E.M. Younes and H.A. Motaweh, Int. J. Electrochem. Sci., 6, 206 (2011).
- M.A. Carvalho-Mazzeu, L.K. Faria, M.R. Baldan, M.C. Rezende and E.S. Gonçalves, Braz. J. Chem. Eng., 35, 123 (2018); https://doi.org/10.1590/0104-6632.20180351s20160201
- E. Ozkazanc, S. Zor, H. Ozkazanc and U. Abaci, Polym. Eng. Sci., 51, 617 (2011); https://doi.org/10.1002/pen.21866
- R. Valenzuela, Phys. Res. Int., 2012, 1 (2012); https://doi.org/10.1155/2012/591839
- C. Kittel, P. McEuen and P. McEuen, Introduction to Solid State Physics, vol. 8. Wiley: New York (1996).
- S.M. Hassan, A.G. Baker and H.I. Jafaar, Int. J. Basic Appl. Sci., 1, 338 (2012); https://doi.org/10.17142/ijbas-2012.1.2.22
- I. Sadiq, S. Naseem, M. Naeem Ashiq, M.A. Khan, S. Niaz and M.U. Rana, Progr. Nat. Sci.: Mater. Int., 25, 419 (2015); https://doi.org/10.1016/j.pnsc.2015.09.011
- P. Barber, S. Balasubramanian, Y. Anguchamy, S. Gong, A. Wibowo, H. Gao, H. Ploehn and H.-C. Zur Loye, Materials, 2, 1697 (2009); https://doi.org/10.3390/ma2041697
- K.W. Wagner, Arch. J. Elektrotech, 2, 371 (1914); https://doi.org/10.1007/BF01657322
- D.-H. Yoon, J. Zhang and B.I. Lee, Mater. Res. Bull., 38, 765 (2003); https://doi.org/10.1016/S0025-5408(03)00075-8
References
J. Stejskal and R.G. Gilbert, Pure Appl. Chem., 74, 857 (2002); https://doi.org/10.1351/pac200274050857
S.B. Kondawar, A.I. Nandapure and B.I. Nandapure, J. Adv. Mater. Lett., 5, 339 (2014); https://doi.org/10.5185/amlett.2014.amwc.1035
V.J. Babu, S. Vempati and S. Ramakrishna, Mater. Sci. Appl., 4, 1 (2013); https://doi.org/10.4236/msa.2013.41001
Y. Li, H. Zhang, Y. Liu, Q. Wen and J. Li, Nanotechnology, 19, 105605 (2008); https://doi.org/10.1088/0957-4484/19/10/105605
H.G. Taleghani, M. Aleahmad and H. Eisazadeh, World Appl. Sci. J., 6, 1607 (2009).
J.C. Aphesteguy, P.G. Bercoff and S.E. Jacobo, Physica B, 398, 200 (2007); https://doi.org/10.1016/j.physb.2007.04.018
G.D. Prasanna, H.S. Jayanna and V. Prasad, J. Appl. Polym. Sci., 120, 2856 (2011); https://doi.org/10.1002/app.33304
C.B. Sridhar, J. Husain and M.A. Prasad, Int. J. Adv. Eng. Technol., 7, 532 (2014).
E.E. Tanriverdi, A.T. Uzumcu, H. Kavas, A. Demir and A. Baykal, Nano-Micro Lett., 3, 99 (2011); https://doi.org/10.1007/BF03353658
M. Khairy and M.E. Gouda, J. Adv. Res., 6, 555 (2015); https://doi.org/10.1016/j.jare.2014.01.009
A.A. Syed and M.K. Dinesan, Talanta, 38, 815 (1991); https://doi.org/10.1016/0039-9140(91)80261-W
J.-C. Chiang and A.G. MacDiarmid, Synth. Met., 13, 193 (1986); https://doi.org/10.1016/0379-6779(86)90070-6
G.G. Wallace, P.R. Teasdale, G.M. Spinks and A.P. Leon, Kane-Maguire, Conductive Electroactive Polymers: Intelligent Polymer Systems, Taylor and Francis: Boca Raton, edn 3 (2008).
A.G. MacDiarmid, J.C. Chiang, A.F. Richter and A.J. Epstein, Synth. Met., 18, 285 (1987); https://doi.org/10.1016/0379-6779(87)90893-9
A.H. Elsayed, M.M. Eldin, A.M. Elsyed, A.A. Elazm, E.M. Younes and H.A. Motaweh, Int. J. Electrochem. Sci., 6, 206 (2011).
M.A. Carvalho-Mazzeu, L.K. Faria, M.R. Baldan, M.C. Rezende and E.S. Gonçalves, Braz. J. Chem. Eng., 35, 123 (2018); https://doi.org/10.1590/0104-6632.20180351s20160201
E. Ozkazanc, S. Zor, H. Ozkazanc and U. Abaci, Polym. Eng. Sci., 51, 617 (2011); https://doi.org/10.1002/pen.21866
R. Valenzuela, Phys. Res. Int., 2012, 1 (2012); https://doi.org/10.1155/2012/591839
C. Kittel, P. McEuen and P. McEuen, Introduction to Solid State Physics, vol. 8. Wiley: New York (1996).
S.M. Hassan, A.G. Baker and H.I. Jafaar, Int. J. Basic Appl. Sci., 1, 338 (2012); https://doi.org/10.17142/ijbas-2012.1.2.22
I. Sadiq, S. Naseem, M. Naeem Ashiq, M.A. Khan, S. Niaz and M.U. Rana, Progr. Nat. Sci.: Mater. Int., 25, 419 (2015); https://doi.org/10.1016/j.pnsc.2015.09.011
P. Barber, S. Balasubramanian, Y. Anguchamy, S. Gong, A. Wibowo, H. Gao, H. Ploehn and H.-C. Zur Loye, Materials, 2, 1697 (2009); https://doi.org/10.3390/ma2041697
K.W. Wagner, Arch. J. Elektrotech, 2, 371 (1914); https://doi.org/10.1007/BF01657322
D.-H. Yoon, J. Zhang and B.I. Lee, Mater. Res. Bull., 38, 765 (2003); https://doi.org/10.1016/S0025-5408(03)00075-8