Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Surface Functionalization of MnFe2O4 Nanoparticles with Ethylenediamine for Hyperthermia Application
Corresponding Author(s) : S.H. Pawar
Asian Journal of Chemistry,
Vol. 31 No. 5 (2019): Vol 31 Issue 5
Abstract
Biocompatible magnetic nanoparticles with enhanced heating proficiency are required for magnetic hyperthermia in order to use it efficiently in cancer treatment. In this paper, ethylenediamine functionalized monodispersed manganese iron oxide (MnFe2O4) nanoparticles were synthesized by using polyol method and functionalized nanoparticles were characterized by using X-ray diffraction, scanning electron microscope, transmission electron microscopy, vibrating sample magnetometry, fourier transform infrared spectroscopy and thermogravimetric analysis techniques for structural, morphological and magnetic analysis. Hyperthermia characteristics of functionalized MnFe2O4 nanoparticles were studied at 167.6, 251.4 and 335.2 Oe to assess the feasibility magnetic hyperthermia anticancer therapy. Outcome revealed that nanoparticles the self-heating temperature rise up to 48.76 to 56.34 °C at 5 and 10 mg mL-1 concentrations in water respectively. Specific absorption rate 94.65 W g-1 was observed at 5 mg mL-1 concentration. Biocompatibility study of functionalized nanoparticles has divulged almost no toxicity for nanoparticles.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- N.G. Shetake, M.M.S Balla, A. Kumar and B.N. Pandey, J. Radiat. Cancer Res., 7, 13 (2016); https://doi.org/10.4103/0973-0168.184606.
- D. Ortega and Q. Pankhurst, Nanoscience: Nanostructures through Chemistry, Royal Society of Chemistry, vol. 1 (2012).
- M. Colombo, S. Carregal-Romero, M.F. Casula, L. Gutiérrez, M.P. Morales, I.B. Böhm, J.T. Heverhagen, D. Prosperi and W.J. Parak, Chem. Soc. Rev., 41, 4306 (2012); https://doi.org/10.1039/c2cs15337h.
- M.Y. Rafique, L.-Q. Pan, Q. Javed, M.Z. Iqbal, H.-M. Qiu, M.H. Farooq, Z.-G. Guo and M. Tanveer, Chin. Phys. B, 22, 107101 (2013); https://doi.org/10.1088/1674-1056/22/10/107101.
- B. Sahoo, S.K. Sahu, S. Nayak, D. Dhara and P. Pramanik, Catal. Sci. Technol., 2, 1367 (2012); https://doi.org/10.1039/c2cy20026k.
- N.M. Deraz, Int. J. Electrochem. Sci., 7, 5534 (2012).
- S. Dutz and R. Hergt, Int. J. Hyperthermia, 29, 790 (2013); https://doi.org/10.3109/02656736.2013.822993.
- S. Rana, N.V. Jadhav, K.C. Barick, B.N. Pandey and P.A. Hassan, Dalton Trans., 43, 12263 (2014); https://doi.org/10.1039/C4DT00898G.
- W. Wu, Q. He and C. Jiang, Nanoscale Res. Lett., 3, 397 (2008); https://doi.org/10.1007/s11671-008-9174-9.
- L. Zhao, H. Yang, L. Yu, Y. Cui, X. Zhao, B. Zou and S. Feng, J. Magn. Magn. Mater., 301, 445 (2006); https://doi.org/10.1016/j.jmmm.2005.07.033.
- M. Mozaffari, B. Behdadfar and J. Amighian, Iran. J. Pharm. Sci., 4, 115 (2008).
- T.K. Indira and P.K. Lakshmi, J. Pharm. Sci. Nanotechnol., 3, 1035 (2010).
- A. Scano, G. Ennas, F. Frongia, A. La Barbera, M.A. López-Quintela, G. Marongiu, G. Paschina, D. Peddis, M. Pilloni and C. Vázquez-Vázquez, J. Nanopart. Res., 13, 3063 (2011); https://doi.org/10.1007/s11051-010-0205-y.
- S. Sam and A.S. Nesaraj, Int. J. Appl. Sci. Eng., 9, 223 (2011).
- G. Gnanaprakash, J. Philip and B. Raj, Mater. Lett., 61, 4545 (2007); https://doi.org/10.1016/j.matlet.2007.02.048.
- A.B. Salunkhe, V.M. Khot and S.H. Pawar, Curr. Top. Med. Chem., 14, 572 (2014); https://doi.org/10.2174/1568026614666140118203550.
- Z.Z. Lazarevic, C. Jovalekic, A. Milutinovic, M.J. Romcevic and N.Z. Romcevic, Acta Phys. Pol. A, 121, 682 (2012); https://doi.org/10.12693/APhysPolA.121.682.
- W.H. Kwon, J.Y. Kang, J.G. Lee, S.W. Lee and K.P. Chae, J. Magnetics, 15, 159 (2010); https://doi.org/10.4283/JMAG.2010.15.4.159.
- H. Dong, Y.C. Chen and C. Feldmann, Green Chem., 17, 4107 (2015); https://doi.org/10.1039/C5GC00943J.
- W. Cai and J. Wan, J. Colloid Interface Sci., 305, 366 (2007); https://doi.org/10.1016/j.jcis.2006.10.023.
- D. Maity, S.N. Kale, R. Kaul-Ghanekar, J.M. Xue and J. Ding, J. Magn. Magn. Mater., 321, 3093 (2009); https://doi.org/10.1016/j.jmmm.2009.05.020.
- H. Ni, X. Sun, Y. Li and C. Li, J. Mater. Sci., 50, 4270 (2015); https://doi.org/10.1007/s10853-015-8979-z.
- G. Zhang, F. Qie, J. Hou, S. Luo, L. Luo, X. Sun and T. Tan, J. Mater. Res., 27, 1006 (2012); https://doi.org/10.1557/jmr.2012.35.
- R.M. Cornell and U. Schwertmann, The Iron Oxides: Structure, Properties, Reactions, Occurrence and Uses, Weinheim, VCH: New York (1996).
- M. Yamaura, R.L. Camilo, L.C. Sampaio, M.A. Macêdo, M. Nakamura and H.E. Toma, J. Magn. Magn. Mater., 279, 210 (2004); https://doi.org/10.1016/j.jmmm.2004.01.094.
- S. Laurent, S. Dutz, U.O. Häfeli and M. Mahmoudi, Adv. Colloid Interface Sci., 166, 8 (2011); https://doi.org/10.1016/j.cis.2011.04.003.
- R.E. Rosensweig, J. Magn. Magn. Mater., 252, 370 (2002); https://doi.org/10.1016/S0304-8853(02)00706-0.
- R. Ghosh, L. Pradhan, Y.P. Devi, S.S. Meena, R. Tewari, A. Kumar, S. Sharma, N.S. Gajbhiye, R.K. Vatsa, B.N. Pandey and R.S. Ningthoujam, J. Mater. Chem., 21, 13388 (2011); https://doi.org/10.1039/c1jm10092k.
- V.M. Khot, A.B. Salunkhe, N.D. Thorat, R.S. Ningthoujam and S.H. Pawar, Dalton Trans., 42, 1249 (2013); https://doi.org/10.1039/C2DT31114C.
- R. Hergt, S. Dutz and M. Zeisberger, Nanotechnology, 21, 015706 (2010); https://doi.org/10.1088/0957-4484/21/1/015706.
- D. Richards and A. Ivanisevic, Chem. Soc. Rev., 41, 2052 (2012); https://doi.org/10.1039/C1CS15252A.
References
N.G. Shetake, M.M.S Balla, A. Kumar and B.N. Pandey, J. Radiat. Cancer Res., 7, 13 (2016); https://doi.org/10.4103/0973-0168.184606.
D. Ortega and Q. Pankhurst, Nanoscience: Nanostructures through Chemistry, Royal Society of Chemistry, vol. 1 (2012).
M. Colombo, S. Carregal-Romero, M.F. Casula, L. Gutiérrez, M.P. Morales, I.B. Böhm, J.T. Heverhagen, D. Prosperi and W.J. Parak, Chem. Soc. Rev., 41, 4306 (2012); https://doi.org/10.1039/c2cs15337h.
M.Y. Rafique, L.-Q. Pan, Q. Javed, M.Z. Iqbal, H.-M. Qiu, M.H. Farooq, Z.-G. Guo and M. Tanveer, Chin. Phys. B, 22, 107101 (2013); https://doi.org/10.1088/1674-1056/22/10/107101.
B. Sahoo, S.K. Sahu, S. Nayak, D. Dhara and P. Pramanik, Catal. Sci. Technol., 2, 1367 (2012); https://doi.org/10.1039/c2cy20026k.
N.M. Deraz, Int. J. Electrochem. Sci., 7, 5534 (2012).
S. Dutz and R. Hergt, Int. J. Hyperthermia, 29, 790 (2013); https://doi.org/10.3109/02656736.2013.822993.
S. Rana, N.V. Jadhav, K.C. Barick, B.N. Pandey and P.A. Hassan, Dalton Trans., 43, 12263 (2014); https://doi.org/10.1039/C4DT00898G.
W. Wu, Q. He and C. Jiang, Nanoscale Res. Lett., 3, 397 (2008); https://doi.org/10.1007/s11671-008-9174-9.
L. Zhao, H. Yang, L. Yu, Y. Cui, X. Zhao, B. Zou and S. Feng, J. Magn. Magn. Mater., 301, 445 (2006); https://doi.org/10.1016/j.jmmm.2005.07.033.
M. Mozaffari, B. Behdadfar and J. Amighian, Iran. J. Pharm. Sci., 4, 115 (2008).
T.K. Indira and P.K. Lakshmi, J. Pharm. Sci. Nanotechnol., 3, 1035 (2010).
A. Scano, G. Ennas, F. Frongia, A. La Barbera, M.A. López-Quintela, G. Marongiu, G. Paschina, D. Peddis, M. Pilloni and C. Vázquez-Vázquez, J. Nanopart. Res., 13, 3063 (2011); https://doi.org/10.1007/s11051-010-0205-y.
S. Sam and A.S. Nesaraj, Int. J. Appl. Sci. Eng., 9, 223 (2011).
G. Gnanaprakash, J. Philip and B. Raj, Mater. Lett., 61, 4545 (2007); https://doi.org/10.1016/j.matlet.2007.02.048.
A.B. Salunkhe, V.M. Khot and S.H. Pawar, Curr. Top. Med. Chem., 14, 572 (2014); https://doi.org/10.2174/1568026614666140118203550.
Z.Z. Lazarevic, C. Jovalekic, A. Milutinovic, M.J. Romcevic and N.Z. Romcevic, Acta Phys. Pol. A, 121, 682 (2012); https://doi.org/10.12693/APhysPolA.121.682.
W.H. Kwon, J.Y. Kang, J.G. Lee, S.W. Lee and K.P. Chae, J. Magnetics, 15, 159 (2010); https://doi.org/10.4283/JMAG.2010.15.4.159.
H. Dong, Y.C. Chen and C. Feldmann, Green Chem., 17, 4107 (2015); https://doi.org/10.1039/C5GC00943J.
W. Cai and J. Wan, J. Colloid Interface Sci., 305, 366 (2007); https://doi.org/10.1016/j.jcis.2006.10.023.
D. Maity, S.N. Kale, R. Kaul-Ghanekar, J.M. Xue and J. Ding, J. Magn. Magn. Mater., 321, 3093 (2009); https://doi.org/10.1016/j.jmmm.2009.05.020.
H. Ni, X. Sun, Y. Li and C. Li, J. Mater. Sci., 50, 4270 (2015); https://doi.org/10.1007/s10853-015-8979-z.
G. Zhang, F. Qie, J. Hou, S. Luo, L. Luo, X. Sun and T. Tan, J. Mater. Res., 27, 1006 (2012); https://doi.org/10.1557/jmr.2012.35.
R.M. Cornell and U. Schwertmann, The Iron Oxides: Structure, Properties, Reactions, Occurrence and Uses, Weinheim, VCH: New York (1996).
M. Yamaura, R.L. Camilo, L.C. Sampaio, M.A. Macêdo, M. Nakamura and H.E. Toma, J. Magn. Magn. Mater., 279, 210 (2004); https://doi.org/10.1016/j.jmmm.2004.01.094.
S. Laurent, S. Dutz, U.O. Häfeli and M. Mahmoudi, Adv. Colloid Interface Sci., 166, 8 (2011); https://doi.org/10.1016/j.cis.2011.04.003.
R.E. Rosensweig, J. Magn. Magn. Mater., 252, 370 (2002); https://doi.org/10.1016/S0304-8853(02)00706-0.
R. Ghosh, L. Pradhan, Y.P. Devi, S.S. Meena, R. Tewari, A. Kumar, S. Sharma, N.S. Gajbhiye, R.K. Vatsa, B.N. Pandey and R.S. Ningthoujam, J. Mater. Chem., 21, 13388 (2011); https://doi.org/10.1039/c1jm10092k.
V.M. Khot, A.B. Salunkhe, N.D. Thorat, R.S. Ningthoujam and S.H. Pawar, Dalton Trans., 42, 1249 (2013); https://doi.org/10.1039/C2DT31114C.
R. Hergt, S. Dutz and M. Zeisberger, Nanotechnology, 21, 015706 (2010); https://doi.org/10.1088/0957-4484/21/1/015706.
D. Richards and A. Ivanisevic, Chem. Soc. Rev., 41, 2052 (2012); https://doi.org/10.1039/C1CS15252A.