Copyright (c) 2020 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
A Study on N-Substituted Nortropinone Synthesis using Acetone Equivalents
Corresponding Author(s) : J.H. Song
Asian Journal of Chemistry,
Vol. 32 No. 5 (2020): Vol 32 Issue 5
Abstract
Robinson′s synthesis has long been a classic in organic chemistry due to its simplicity and impact in the industry. Various modifications have been made to improve the system. Among them, replacing acetone with more acidic chemical equivalents such as calcium dicarboxylic acid or ethyl dicarboxylic acetone improved the yield. In line with this trend, our group previously reported the synthesis of mono- and di-N-substituted tropinone derivatives from the one-pot reaction of 2,5-dimethoxy tetrahydrofuran and various amines with acetonedicarboxylic acid in the presence of HCl and water at room temperature. In this study, the synthesis with acetone instead of acetone-dicarboxylic acid was examined. Mono- and di-N-substituted nortropinones were prepared in higher yields in all cases although there were extent to which yields increased depending on the nature of substituents.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Singh, Chem. Rev., 100, 925 (2000); https://doi.org/10.1021/cr9700538
- G.P. Pollini, S. Benetti, C. De Risi and V. Zanirato, Chem. Rev., 106, 2434 (2006); https://doi.org/10.1021/cr050995+
- D. O’Hagan, J. Nat. Prod. Rep., 17, 435 (2000); https://doi.org/10.1039/a707613d
- A.J. Humphrey and D. O’Hagan, J. Nat. Prod. Rep., 18, 494 (2001); https://doi.org/10.1039/b001713m
- R. Robinson, J. Am. Chem. Soc., 111, 762 (1917); https://doi.org/10.1039/CT9171100762
- W. Parker, R.A. Raphael and D.I. Wilkinson, J. Chem. Soc., 2433 (1959); https://doi.org/10.1039/jr9590002433
- C. Schöpf, Angew. Chem., 50, 797 (1937); https://doi.org/10.1002/ange.19370504103
- D.I. Jung, J.H. Park, S. Rho, Y.G. Lee, Y.M. Park, I.S. Kim, I.S. Jeong and M.S. Park, J. Korean Chem. Soc., 41, 414 (1997).
- D.I. Jung, J.A. Lee, D.H. Lee, M.J. Kwak and S.J. Lee, Life Sci., 9, 49 (1999).
- D.I. Jung, J.H. Song, Y.H. Kim, D.H. Lee and H. Song, Bull. Korean Chem. Soc., 25, 1932 (2004); https://doi.org/10.5012/bkcs.2004.25.12.1932
- E.O. Wiig, J. Phys. Soc., 34, 596 (1930); https://doi.org/10.1021/j150309a013
- K.C. Nicolaou, T. Montagnon, P.S. Baran and Y.L. Zhong, J. Am. Chem. Soc., 124, 2245 (2002); https://doi.org/10.1021/ja012127+
- N. Willand, B. Folléas, C. Boutillon, L. Verbraeken, J.-C. Gesquière, A. Tartar and B. Deprez, Tetrahedron Lett., 48, 5007 (2007); https://doi.org/10.1016/j.tetlet.2007.05.110
- F. Novelli and F. Sparatore, Il Farmaco, 57, 871 (2002); https://doi.org/10.1016/S0014-827X(02)01293-4
- K.C. Gross and P.G. Seybold, Int. J. Quantum Chem., 80, 1107 (2000); https://doi.org/10.1002/1097-461X(2000)80:4/5<1107::AIDQUA60>3.0.CO;2-T
- N. Mondal and S. Mukherjee, J. Chem. Res., 2003, 580 (2003); https://doi.org/10.3184/030823403322597397
- S. Cotes and J. Cotuá, Orient. J. Chem., 31, 1937 (2015); https://doi.org/10.13005/ojc/310410
- J.K. Laha, Chem. Nat. Compd., 46, 254 (2010); https://doi.org/10.1007/s10600-010-9581-x
- W.A. Jefferson, C. Hu, D. Song, H. He and J. Qu, ACS Omega, 2, 6728 (2017); https://doi.org/10.1021/acsomega.7b00321
- K. Mikami and H. Ohmura, J. Chem. Commun., 22, 2626 (2002); https://doi.org/10.1039/b208066d
References
S. Singh, Chem. Rev., 100, 925 (2000); https://doi.org/10.1021/cr9700538
G.P. Pollini, S. Benetti, C. De Risi and V. Zanirato, Chem. Rev., 106, 2434 (2006); https://doi.org/10.1021/cr050995+
D. O’Hagan, J. Nat. Prod. Rep., 17, 435 (2000); https://doi.org/10.1039/a707613d
A.J. Humphrey and D. O’Hagan, J. Nat. Prod. Rep., 18, 494 (2001); https://doi.org/10.1039/b001713m
R. Robinson, J. Am. Chem. Soc., 111, 762 (1917); https://doi.org/10.1039/CT9171100762
W. Parker, R.A. Raphael and D.I. Wilkinson, J. Chem. Soc., 2433 (1959); https://doi.org/10.1039/jr9590002433
C. Schöpf, Angew. Chem., 50, 797 (1937); https://doi.org/10.1002/ange.19370504103
D.I. Jung, J.H. Park, S. Rho, Y.G. Lee, Y.M. Park, I.S. Kim, I.S. Jeong and M.S. Park, J. Korean Chem. Soc., 41, 414 (1997).
D.I. Jung, J.A. Lee, D.H. Lee, M.J. Kwak and S.J. Lee, Life Sci., 9, 49 (1999).
D.I. Jung, J.H. Song, Y.H. Kim, D.H. Lee and H. Song, Bull. Korean Chem. Soc., 25, 1932 (2004); https://doi.org/10.5012/bkcs.2004.25.12.1932
E.O. Wiig, J. Phys. Soc., 34, 596 (1930); https://doi.org/10.1021/j150309a013
K.C. Nicolaou, T. Montagnon, P.S. Baran and Y.L. Zhong, J. Am. Chem. Soc., 124, 2245 (2002); https://doi.org/10.1021/ja012127+
N. Willand, B. Folléas, C. Boutillon, L. Verbraeken, J.-C. Gesquière, A. Tartar and B. Deprez, Tetrahedron Lett., 48, 5007 (2007); https://doi.org/10.1016/j.tetlet.2007.05.110
F. Novelli and F. Sparatore, Il Farmaco, 57, 871 (2002); https://doi.org/10.1016/S0014-827X(02)01293-4
K.C. Gross and P.G. Seybold, Int. J. Quantum Chem., 80, 1107 (2000); https://doi.org/10.1002/1097-461X(2000)80:4/5<1107::AIDQUA60>3.0.CO;2-T
N. Mondal and S. Mukherjee, J. Chem. Res., 2003, 580 (2003); https://doi.org/10.3184/030823403322597397
S. Cotes and J. Cotuá, Orient. J. Chem., 31, 1937 (2015); https://doi.org/10.13005/ojc/310410
J.K. Laha, Chem. Nat. Compd., 46, 254 (2010); https://doi.org/10.1007/s10600-010-9581-x
W.A. Jefferson, C. Hu, D. Song, H. He and J. Qu, ACS Omega, 2, 6728 (2017); https://doi.org/10.1021/acsomega.7b00321
K. Mikami and H. Ohmura, J. Chem. Commun., 22, 2626 (2002); https://doi.org/10.1039/b208066d