Copyright (c) 2020 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis and Characterization of Niobium Oxide Nanoparticles, Polyindole and Nb2O5/Polyindole Nanocomposite
Corresponding Author(s) : V. Jaisankar
Asian Journal of Chemistry,
Vol. 32 No. 3 (2020): Vol 32 Issue 3
Abstract
In present work, polyindole-Nb2O5 nanocomposite was synthesized and characterized by various analytical methods. Niobium oxide nanoparticles were prepared by sol gel method. Polyindole and Nb2O5 nanocomposites was prepared by chemical polymerization method and the morphology of Nb2O5 nanoparticles, polyindole and the nanocomposite was studied by SEM. The chemical structure of Nb2O5 nanoparticle, polyindole and the nanocomposite was characterized by UV-visible, FTIR and NMR spectroscopic techniques. Elemental composition and chemical character was analyzed by the use of EDAX technique. The X-ray powder diffraction technique was used to determine the degree of crystallinity and crystallite sizes. Thermal analysis such as TGA and DSC showed that the conducting polymers in the nanocomposites were stable even at high temperatures.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K.-Y. Hwa and B. Subramani, J. Biosens. Bioelectron., 62, 127 (2014); https://doi.org/10.1016/j.bios.2014.06.023
- G. Wang, X. Tan, Q. Zhou, Y. Liu, M. Wang and L. Yang, Sens. Actuators B Chem., 190, 730 (2014); https://doi.org/10.1016/j.snb.2013.09.042
- S.-N. Ding, B.-H. Gao, D. Shan, Y.-M. Sun and S. Cosnier, J. Biosens. Bioelectron., 39, 342 (2013); https://doi.org/10.1016/j.bios.2012.07.065
- R.A. Rani, A.S. Zoolfakar, J.Z. Ou, M.R. Field, M. Austin and K. Kalantar-zadeh, Sens. Actuators B Chem., 176, 149 (2013); https://doi.org/10.1016/j.snb.2012.09.028
- P. Jittarporn, S. Badilescu, M.N. Al Sawafta, L. Sikong and V.-V. Truong J. Sci. Adv. Mater. Devices, 2, 286 (2017); https://doi.org/10.1016/j.jsamd.2017.08.005
- A.M. Raba, J. Bautista-Ruíz and M.R. Joya, Mater. Res., 19, 1381 (2016); https://doi.org/10.1590/1980-5373-mr-2015-0733
- Y. Zhao, X. Zhou, L. Ye and S. Chi Edman Tsang, J. Nano Rev. Exp., 3, 17631 (2012); https://doi.org/10.3402/nano.v3i0.17631
- N. Kumagai, I. Ishiyama and K. Tanno, J. Power Sources, 20, 193 (1987); https://doi.org/10.1016/0378-7753(87)80111-8
- M.R. Joya, J.B. Ortega, M.R.P. Angela, F.G. da Silva Filho and P. De T.C. Freire, Metals, 7, 142 (2017). https://doi.org/10.3390/met7040142
- E.B. Maarouf, D. Billaud and E. Hannecart, Mater. Res. Bull., 29, 637 (1994); https://doi.org/10.1016/0025-5408(94)90119-8
- D. Billaud, E.B. Maarouf and E. Hannecart, Synth. Met., 69, 571 (1995); https://doi.org/10.1016/0379-6779(94)02573-H
- P. Syed Abthagir and R. Saraswathi, Org. Electron., 5, 299 (2004); https://doi.org/10.1016/j.orgel.2004.10.002
- W.Q. Zhou, Y. Du, H. Zhang, J. Xu and P. Yang, Electrochim. Acta, 55, 2911 (2010); https://doi.org/10.1016/j.electacta.2010.01.017
- S. Palaniappan and A. John, J. Mol. Catal. Chem., 242, 168 (2005); https://doi.org/10.1016/j.molcata.2005.07.041
- C. Zhijiang, S. Xingjuan and F. Yanan, J. Power Sources, 227, 53 (2013); https://doi.org/10.1016/j.jpowsour.2012.10.081
- T. Tüken, M. Düdükçü, B. Yazýcý and M. Erbil, Prog. Org. Coat., 50, 273 (2004); https://doi.org/10.1016/j.porgcoat.2004.03.004
- P.C. Pandey, J. Chem. Soc., Faraday Trans., 84, 2259 (1988); https://doi.org/10.1039/f19888402259
- N. Uekawa, T. Kudo, F. Mori, Y.J. Wu and K. Kakegawa, J. Colloid Interface Sci., 264, 378 (2003); https://doi.org/10.1016/S0021-9797(03)00460-0
- S.P. Koiry, V. Saxena, D. Sutar, S. Bhattacharya, D.K. Aswal, S.K. Gupta and J.V. Yakhmi, J. Appl. Sci., 103, 595 (2007); https://doi.org/10.1002/app.25245
- Ö. Eraldemir, B. Sari, A. Gök and H. Ýbrahim Ünal, J. Macromol. Sci. Part A Pure Appl. Chem., 45, 205 (2008); https://doi.org/10.1080/10601320701839890
- R.F. Brandao, R.L. Quirino, V.M. Mello, A.P. Tavares, A.C. Peres, F. Guinhos, J.C. Rubim and P.A.Z. Suarez, Braz. Chem. Soc., 20, 954 (2009); https://doi.org/10.1590/S0103-50532009000500022
- C.C.M. Pereira and E.R. Lachter, J. Appl. Catal. A, Gen., 266, 67 (2004); https://doi.org/10.1016/j.apcata.2004.01.027
- S. An, T. Abdiryim, Y. Ding and I. Nurulla, Mater. Lett., 62, 935 (2008); https://doi.org/10.1016/j.matlet.2007.07.014
- P. Koiry, V. Saxena, D. Sutar, S. Bhattacharya, D.K. Aswal, S.K. Gupta and J.V. Yakshmi, J. Appl. Polym. Sci., 103, 595 (2007); https://doi.org/10.1002/app.25245
- N.B. Taylan, B. Sari and A.H. Unal, J. Polym. Sci., B, Polym. Phys., 48, 1290 (2010); https://doi.org/10.1002/polb.22023
- L. Joshi and R. Prakash, Mater. Lett., 65, 3016 (2011); https://doi.org/10.1016/j.matlet.2011.06.036
- T. Sreethawong, S. Ngamsinlapasathian and S. Yoshikawa, Mater. Lett., 78, 135 (2012); https://doi.org/10.1016/j.matlet.2012.03.045
- H.Y. Lin, H.C. Yang and W.L. Wang, Catal. Today, 174, 106 (2011); https://doi.org/10.1016/j.cattod.2011.01.052
- G. Nie, L. Zhou and H. Yang, J. Mater. Chem., 21, 13873 (2011); https://doi.org/10.1039/C1JM11723H
- G. Nie, X. Han, J. Hou and S. Zhang, J. Electroanal. Chem., 604, 125 (2007); https://doi.org/10.1016/j.jelechem.2007.03.010
- M. Tiwari, A. Kumar, H.S. Umre and R. Prakash, J. Appl. Polym. Sci., 132, 42192 (2007); https://doi.org/10.1002/app.42192
- H.E. Gottlieb, V. Kotlyar and A. Nudelman, J. Org. Chem., 62, 7512 (1997); https://doi.org/10.1021/jo971176v
- B. Gupta, D.S. Chauhan and R. Prakash, Mater. Chem. Phys., 120, 625 (2010); https://doi.org/10.1016/j.matchemphys.2009.12.026
- J.Z. Ou, R.A. Rani, M.-H. Ham, M.R. Field, Y. Zhang, H. Zheng, P. Reece, S. Zhuiykov, S. Sriram, M. Bhaskaran, R.B. Kaner and K. Kalantar-zadeh, ACS Nano, 6, 4045 (2012); https://doi.org/10.1021/nn300408p
- M.B.G. Costa, J.M. Jaurez, M.L. Martinez, J. Cussa and O.A. Anunziata, Micropor. Macropor. Mater., 153, 191 (2012). https://doi.org/10.1016/j.micromeso.2011.12.044
- W.Q. Zhou, Y.K. Du, F.F. Ren, C.Y. Wang, J.K. Xu and P. Yang, Int. J. Hydrogen Energy, 35, 3270 (2010); https://doi.org/10.1016/j.ijhydene.2010.01.083
- Y. Zhao, X. Zhao, L. Ye and S.C.E. Tsang, Nano Rev., 3, 17631 (2012); https://doi.org/10.3402/nano.v3i0.17631
- H. Wang, X. Kou, J. Zhang and J. Li, Bull. Mater. Sci., 31, 97 (2008); https://doi.org/10.1007/s12034-008-0017-1
- M.F. Kotkata, A.E. Masoud, M.B. Mohamed and E.A. Mahmoud, Phys. E, 41, 640 (2009); https://doi.org/10.1016/j.physe.2008.10.019
- B. Sari, N. Yavas, M. Makulogullari, O. Erol and H.I. Unal, React. Funct. Polym., 69, 808 (2009); https://doi.org/10.1016/j.reactfunctpolym.2009.07.002
- P. Bajau, T.V. Sreekumar and K. Sen, Polymer, 42, 1707 (2001); https://doi.org/10.1016/S0032-3861(00)00583-8
References
K.-Y. Hwa and B. Subramani, J. Biosens. Bioelectron., 62, 127 (2014); https://doi.org/10.1016/j.bios.2014.06.023
G. Wang, X. Tan, Q. Zhou, Y. Liu, M. Wang and L. Yang, Sens. Actuators B Chem., 190, 730 (2014); https://doi.org/10.1016/j.snb.2013.09.042
S.-N. Ding, B.-H. Gao, D. Shan, Y.-M. Sun and S. Cosnier, J. Biosens. Bioelectron., 39, 342 (2013); https://doi.org/10.1016/j.bios.2012.07.065
R.A. Rani, A.S. Zoolfakar, J.Z. Ou, M.R. Field, M. Austin and K. Kalantar-zadeh, Sens. Actuators B Chem., 176, 149 (2013); https://doi.org/10.1016/j.snb.2012.09.028
P. Jittarporn, S. Badilescu, M.N. Al Sawafta, L. Sikong and V.-V. Truong J. Sci. Adv. Mater. Devices, 2, 286 (2017); https://doi.org/10.1016/j.jsamd.2017.08.005
A.M. Raba, J. Bautista-Ruíz and M.R. Joya, Mater. Res., 19, 1381 (2016); https://doi.org/10.1590/1980-5373-mr-2015-0733
Y. Zhao, X. Zhou, L. Ye and S. Chi Edman Tsang, J. Nano Rev. Exp., 3, 17631 (2012); https://doi.org/10.3402/nano.v3i0.17631
N. Kumagai, I. Ishiyama and K. Tanno, J. Power Sources, 20, 193 (1987); https://doi.org/10.1016/0378-7753(87)80111-8
M.R. Joya, J.B. Ortega, M.R.P. Angela, F.G. da Silva Filho and P. De T.C. Freire, Metals, 7, 142 (2017). https://doi.org/10.3390/met7040142
E.B. Maarouf, D. Billaud and E. Hannecart, Mater. Res. Bull., 29, 637 (1994); https://doi.org/10.1016/0025-5408(94)90119-8
D. Billaud, E.B. Maarouf and E. Hannecart, Synth. Met., 69, 571 (1995); https://doi.org/10.1016/0379-6779(94)02573-H
P. Syed Abthagir and R. Saraswathi, Org. Electron., 5, 299 (2004); https://doi.org/10.1016/j.orgel.2004.10.002
W.Q. Zhou, Y. Du, H. Zhang, J. Xu and P. Yang, Electrochim. Acta, 55, 2911 (2010); https://doi.org/10.1016/j.electacta.2010.01.017
S. Palaniappan and A. John, J. Mol. Catal. Chem., 242, 168 (2005); https://doi.org/10.1016/j.molcata.2005.07.041
C. Zhijiang, S. Xingjuan and F. Yanan, J. Power Sources, 227, 53 (2013); https://doi.org/10.1016/j.jpowsour.2012.10.081
T. Tüken, M. Düdükçü, B. Yazýcý and M. Erbil, Prog. Org. Coat., 50, 273 (2004); https://doi.org/10.1016/j.porgcoat.2004.03.004
P.C. Pandey, J. Chem. Soc., Faraday Trans., 84, 2259 (1988); https://doi.org/10.1039/f19888402259
N. Uekawa, T. Kudo, F. Mori, Y.J. Wu and K. Kakegawa, J. Colloid Interface Sci., 264, 378 (2003); https://doi.org/10.1016/S0021-9797(03)00460-0
S.P. Koiry, V. Saxena, D. Sutar, S. Bhattacharya, D.K. Aswal, S.K. Gupta and J.V. Yakhmi, J. Appl. Sci., 103, 595 (2007); https://doi.org/10.1002/app.25245
Ö. Eraldemir, B. Sari, A. Gök and H. Ýbrahim Ünal, J. Macromol. Sci. Part A Pure Appl. Chem., 45, 205 (2008); https://doi.org/10.1080/10601320701839890
R.F. Brandao, R.L. Quirino, V.M. Mello, A.P. Tavares, A.C. Peres, F. Guinhos, J.C. Rubim and P.A.Z. Suarez, Braz. Chem. Soc., 20, 954 (2009); https://doi.org/10.1590/S0103-50532009000500022
C.C.M. Pereira and E.R. Lachter, J. Appl. Catal. A, Gen., 266, 67 (2004); https://doi.org/10.1016/j.apcata.2004.01.027
S. An, T. Abdiryim, Y. Ding and I. Nurulla, Mater. Lett., 62, 935 (2008); https://doi.org/10.1016/j.matlet.2007.07.014
P. Koiry, V. Saxena, D. Sutar, S. Bhattacharya, D.K. Aswal, S.K. Gupta and J.V. Yakshmi, J. Appl. Polym. Sci., 103, 595 (2007); https://doi.org/10.1002/app.25245
N.B. Taylan, B. Sari and A.H. Unal, J. Polym. Sci., B, Polym. Phys., 48, 1290 (2010); https://doi.org/10.1002/polb.22023
L. Joshi and R. Prakash, Mater. Lett., 65, 3016 (2011); https://doi.org/10.1016/j.matlet.2011.06.036
T. Sreethawong, S. Ngamsinlapasathian and S. Yoshikawa, Mater. Lett., 78, 135 (2012); https://doi.org/10.1016/j.matlet.2012.03.045
H.Y. Lin, H.C. Yang and W.L. Wang, Catal. Today, 174, 106 (2011); https://doi.org/10.1016/j.cattod.2011.01.052
G. Nie, L. Zhou and H. Yang, J. Mater. Chem., 21, 13873 (2011); https://doi.org/10.1039/C1JM11723H
G. Nie, X. Han, J. Hou and S. Zhang, J. Electroanal. Chem., 604, 125 (2007); https://doi.org/10.1016/j.jelechem.2007.03.010
M. Tiwari, A. Kumar, H.S. Umre and R. Prakash, J. Appl. Polym. Sci., 132, 42192 (2007); https://doi.org/10.1002/app.42192
H.E. Gottlieb, V. Kotlyar and A. Nudelman, J. Org. Chem., 62, 7512 (1997); https://doi.org/10.1021/jo971176v
B. Gupta, D.S. Chauhan and R. Prakash, Mater. Chem. Phys., 120, 625 (2010); https://doi.org/10.1016/j.matchemphys.2009.12.026
J.Z. Ou, R.A. Rani, M.-H. Ham, M.R. Field, Y. Zhang, H. Zheng, P. Reece, S. Zhuiykov, S. Sriram, M. Bhaskaran, R.B. Kaner and K. Kalantar-zadeh, ACS Nano, 6, 4045 (2012); https://doi.org/10.1021/nn300408p
M.B.G. Costa, J.M. Jaurez, M.L. Martinez, J. Cussa and O.A. Anunziata, Micropor. Macropor. Mater., 153, 191 (2012). https://doi.org/10.1016/j.micromeso.2011.12.044
W.Q. Zhou, Y.K. Du, F.F. Ren, C.Y. Wang, J.K. Xu and P. Yang, Int. J. Hydrogen Energy, 35, 3270 (2010); https://doi.org/10.1016/j.ijhydene.2010.01.083
Y. Zhao, X. Zhao, L. Ye and S.C.E. Tsang, Nano Rev., 3, 17631 (2012); https://doi.org/10.3402/nano.v3i0.17631
H. Wang, X. Kou, J. Zhang and J. Li, Bull. Mater. Sci., 31, 97 (2008); https://doi.org/10.1007/s12034-008-0017-1
M.F. Kotkata, A.E. Masoud, M.B. Mohamed and E.A. Mahmoud, Phys. E, 41, 640 (2009); https://doi.org/10.1016/j.physe.2008.10.019
B. Sari, N. Yavas, M. Makulogullari, O. Erol and H.I. Unal, React. Funct. Polym., 69, 808 (2009); https://doi.org/10.1016/j.reactfunctpolym.2009.07.002
P. Bajau, T.V. Sreekumar and K. Sen, Polymer, 42, 1707 (2001); https://doi.org/10.1016/S0032-3861(00)00583-8