Copyright (c) 2020 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Photocatalytic Degradation of Methylene Blue via Cobalt Doped Fe3O4 Nanoparticles
Corresponding Author(s) : T. Kamakshi
Asian Journal of Chemistry,
Vol. 32 No. 6 (2020): Vol 32 Issue 6
Abstract
Cobalt doped Fe3O4 i.e., CoFe3O4 nanoparticles of different concentrations (0, 0.5, 1.0, 1.5, 2.0, 2.5 mol% were represented as Fe3O4, CF1, CF2, CF3, CF4, CF5, respectively) were synthesized using a chemical co-precipitation technique. The XRD patterns and FTIR spectra of Co doped Fe3O4 revealed the formation of spinel structure indicating the successful incorporation of cobalt ions with the Fe3O4 structure of the iron ions at octahedral sites. Scanning electron micrographs showed a fine uniform spherical particles. UV spectroscopic analysis showed that cobalt doping in CoFe3O4 nanocomposites influenced the band gap values. These band gap values decreased in the range of 2.76-1.61 eV (direct), 2.53-0.97 eV (indirect) with increase of cobalt content. The activity of CoFe3O4 in photocatalysis was investigated using methylene blue azo dye under visible light. These results depicted that for 1% cobalt doped Fe3O4 novel material photocatalytic activity was enhanced than all other prepared nanomaterials.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D. Chakraborty and K. Mukhopadhyay, Water Pollution and Abatement Policy in India, A Study from an Economic Perspective; In: Book Series: Global Issues in Water Policy, Springer Netherlands (2014).
- W. Zhang and C.W. Wu, Chem. Pap., 68, 330 (2014); https://doi.org/10.2478/s11696-013-0444-3
- S. Nagai, Science, 130, 1188 (1959); https://doi.org/10.1126/science.130.3383.1188-a
- H. Lin, H. Zhang and L. Hou, J. Hazard. Mater., 276, 182 (2014); https://doi.org/10.1016/j.jhazmat.2014.05.021
- Y.S. Na, C.H. Lee, T.K. Lee, S.W. Lee, Y.S. Park, Y.K. Oh, S.H. Park and S.K. Song, Korean J. Chem. Eng., 22, 246 (2005); https://doi.org/10.1007/BF02701492
- A. Baban, Clean Soil Air Water, 41, 976 (2013); https://doi.org/10.1002/clen.201200145
- X. Zhang, M. Lu, M.A. Mohamed Idrus, C. Crombie and J. Veeriah, Process Safe Environ., 126, 18 (2019); https://doi.org/10.1016/j.psep.2019.03.024
- O. Bello, Y. Hamam and K. Djouani, Alexandria Eng. J., 53, 939 (2014); https://doi.org/10.1016/j.aej.2014.08.002
- H.T. Madsen, Membrane Filtration in Water Treatment: Removal of Micropollutants, In: Chemistry of Advanced Environmental Purification Processes of Water, Elsevier Science: Holland, pp. 199-248 (2014).
- R. Suresh, K. Giribabu, R. Manigandan, L. Vijayalakshmi, A. Stephen and V. Narayanan, AIP Conf. Proc., 1576, 122 (2014); https://doi.org/10.1063/1.4861998
- A.B. Chin and I. Yaacob, J. Mater. Process. Technol., 191, 235 (2007); https://doi.org/10.1016/j.jmatprotec.2007.03.011
- S. Buddee, C. Suwanchawalit and S. Wongnawa, Dig. J. Nanomater.Biostruct., 12, 829 (2017).
- Xuan Sang Nguyen, J. Surf. Eng. Mater. Adv. Technol., 8, 1 (2018).
- F. Fu and Q. Wang, J. Environ. Manage., 92, 407 (2011); https://doi.org/10.1016/j.jenvman.2010.11.011
- R. Saravanan, F. Gracia and A. Stephen, Basic Principles, Mechanism, and Challenges of Photocatalysis In: Nanocomposites for Visible Lightinduced Photocatalysis, Springer International Publishing, Chap. 2 (2017).
- B. Prasad, C. Ghosh, A. Chakraborty, N. Bandyopadhyay and R.K. Ray, Desalination, 274, 105 (2011); https://doi.org/10.1016/j.desal.2011.01.081
- P. Benjwal and K.K. Kar, J. Environ. Chem. Eng., 3, 2076 (2015); https://doi.org/10.1016/j.jece.2015.07.009
- M.J. Allen, V.C. Tung and R.B. Kaner, Chem. Rev., 110, 132 (2010); https://doi.org/10.1021/cr900070d
- A.K. Geim and K.S. Novoselov, Nat. Mater., 6, 183 (2007); https://doi.org/10.1038/nmat1849
- A.H. Rezayan, M. Mousavi, S. Kheirjou, G. Amoabediny, M.S. Ardestani and J. Mohammadnejad, J. Magn. Mater., 420, 210 (2016); https://doi.org/10.1016/j.jmmm.2016.07.003
- M. Arefi, D. Saberi, M. Karimi and A. Heydari, ACS Comb. Sci., 17, 341 (2015); https://doi.org/10.1021/co5001844
- X. Jian, B. Wu, Y. Wei, S.X. Dou, X. Wang, W. He and N. Mahmood, ACS Appl. Mater. Interfaces, 8, 6101 (2016); https://doi.org/10.1021/acsami.6b00388
- K. Kalantari, M. Ahmad, H. Masoumi, K. Shameli, M. Basri and R. Khandanlou, Int. J. Mol. Sci., 15, 12913 (2014); https://doi.org/10.3390/ijms150712913
- Y.T. Prabhu, K.V. Rao, B.S. Kumari, V.S.S. Kumar and T. Pavani, Int. Nano Lett., 5, 85 (2015); https://doi.org/10.1007/s40089-015-0141-z
- L.T. Thu Huong, N.H. Nam, D.H. Doan, H.T. My Nhung, B.T. Quang, P.H. Nam, P.Q. Thong, N.X. Phuc and H.P. Thu, Mater. Chem. Phys., 172, 98 (2016); https://doi.org/10.1016/j.matchemphys.2015.12.065
- Y. Chen, X. Quan, Z. Wang, C. Lee, Z.Z. Wang, P. Tao, C. Song, J. Wu, W. Shang and T. Deng, J. Mater. Chem. A Mater. Energy Sustain., 4, 17503 (2016); https://doi.org/10.1039/C6TA07773K
- N. Sanaeifar, M. Rabiee, M. Abdolrahim, M. Tahriri, D. Vashaee and L. Tayebi, Anal. Biochem., 519, 19 (2017); https://doi.org/10.1016/j.ab.2016.12.006
- A. Emanalzahrani, Asian J. Chem., 29, 2799 (2017); https://doi.org/10.14233/ajchem.2017.20959
- P. Mandal and A.P. Chattopadhyay, Dalton Trans., 44, 11444 (2015); https://doi.org/10.1039/C5DT01260K
- C.T. Yavuz, J.T. Mayo, W.W. Yu, A. Prakash, J.C. Falkner, S. Yean, L. Cong, H.J. Shipley, A. Kan, M. Tomson, D. Natelson and V.L. Colvin, Science, 314, 964 (2006); https://doi.org/10.1126/science.1131475
- S.A. Kulkarni, P.S. Sawadh and P.K. Palei, J. Korean Chem. Soc., 58, 100 (2014); https://doi.org/10.5012/jkcs.2014.58.1.100
- H. Wei and E. Wang, Anal. Chem., 80, 2250 (2008); https://doi.org/10.1021/ac702203f
- P.M. Anjana, M.R. Bindhu, M. Umadevi and R.B. Rakhi, J. Mater. Sci. Mater. Electron., 29, 6040 (2018); https://doi.org/10.1007/s10854-018-8578-2
- M. O’Hara, J.C. Carter, C.L. Warner, M.G. Warner and R.S. Addleman, RSC Adv., 6, 105239 (2016); https://doi.org/10.1039/C6RA22262E
- X.J. Sun, F.T. Liu and Q.H. Jiang, Mater. Sci. Forum, 688, 364 (2011); https://doi.org/10.4028/www.scientific.net/MSF.688.364
- T. Kamakshi, G.S. Sundari, H. Erothu and R.S. Singh, Rasayan J. Chem., 12, 531 (2019); https://doi.org/10.31788/RJC.2019.1225054
- M. Mohapatra, B. Pandey, S. Anand, R.P. Das and H.C. Verma, J. Magn. Magn. Mater., 295, 44 (2005); https://doi.org/10.1016/j.jmmm.2004.12.036
- S. Larumbe, C. Gomez-Polo, J.I. Pérez-Landazábal, A. García-Prieto, J. Alonso, M.L. Fdez-Gubieda, D. Cordero and J. Gómez, J. Nanosci. Nanotechnol., 12, 2652 (2012); https://doi.org/10.1166/jnn.2012.5769
- K. Recko, U. Klekotka, B. Kalska-Szostko, D. Soloviov, D. Satula and J. Waliszewski, Acta Phys. Pol. A, 134, 998 (2018); https://doi.org/10.12693/APhysPolA.134.998
- X. Huang, C. Xu, J. Ma and F. Chen, Adv. Powder Technol., 29, 796 (2018); https://doi.org/10.1016/j.apt.2017.12.025
- M. Yousefi and P. Alimard, Bull. Chem. Soc. Ethiop., 27, 49 (2013); https://doi.org/10.4314/bcse.v27i1.5
- R. Amadelli, L. Samiolo, A. Maldotti, A. Molinari, M. Valigi and D. Gazzoli, Int. J. Photoenergy, 2008, 853753 (2008); https://doi.org/10.1155/2008/853753
- B. Yang, Q. Zhang, X. Ma, J. Kang, J. Shi and B. Tang, Nano Res., 9, 1879 (2016); https://doi.org/10.1007/s12274-016-1080-3
- X. Sun, F. Liu and Q. Jiang, Mater. Sci. Forum, 688, 364 (2011); https://doi.org/10.4028/www.scientific.net/MSF.688.364
- M. Aghazadeh, I. Karimzadeh, M.R. Ganjali and A. Behzad, J. Mater. Sci.: Mater Electron., 28, 18121 (2017); https://doi.org/10.1007/s10854-017-7757-x
- Y.D. Susanti, N. Afifah and R. Saleh, AIP Conf. Proc., 1862, 030039 (2017); https://doi.org/10.1063/1.4991143
- P.K. Boruah, P. Borthakur, G. Darabdhara, C.K. Kamaja, I. Karbhal, M.V. Shelke, P. Phukan, D. Saikia and M.R. Das, RSC Adv., 6, 11049 (2016); https://doi.org/10.1039/C5RA25035H
- K. Wang, Y. Yang, T.C. Zhang, Y. Liang and Q. Wang, RSC Adv., 9, 17664 (2019); https://doi.org/10.1039/C9RA01671F
- K. Wang, L. Yu, S. Yin, H. Li and H. Li, Pure Appl. Chem., 81, 2327 (2009); https://doi.org/10.1351/PAC-CON-08-11-23
- I.F. Ertis and I. Boz, Modern Res. Catal., 6, 1 (2017); https://doi.org/10.4236/mrc.2017.61001
- A. Paliwal, R. Banu, R. Ameta and S.C. Ameta, J. Appl. Chem., 6, 967 (2017).
- H.D. Nguyen, T.D. Nguyen, D.H. Nguyen and P.T. Nguyen, Adv. Nat. Sci. Nanosci. Nanotechnol., 5, 035017 (2014); https://doi.org/10.1088/2043-6262/5/3/035017
- N.Z. Logar and V. Kaucic, Acta Chim. Slov., 53, 117 (2006).
- M.E. Davis, Nature, 417, 813 (2002); https://doi.org/10.1038/nature00785
- G. Viruthagiri and P. Kannan, J. Mater. Res. Technol., 8, 127 (2019); https://doi.org/10.1016/j.jmrt.2017.06.011
- P.K. Boruah, P. Borthakur, G. Darabdhara, C.K. Kamaja, I. Karbhal, M.V. Shelke, P. Phukan, D. Saikia and M.R. Das, RSC Adv., 6, 11049 (2016); https://doi.org/10.1039/C5RA25035H
- A. Lassoued, M.S. Lassoued, S. García-Granda, B. Dkhil, S. Ammar and A. Gadri, J. Mater. Sci. Mater. Electron., 29, 5726 (2018); https://doi.org/10.1007/s10854-018-8543-0
- P. Prasannalakshmi and N. Shanmugam, Spectrochim. Acta A Mol. Biomol. Spectrosc., 175, 1 (2017); https://doi.org/10.1016/j.saa.2016.12.018
- C.-M. Hung C.-W. Chen, Y.-Z. Jhuang and C.-D. Dong, J. Adv. Oxid. Technol., 19, 43 (2016); https://doi.org/10.1515/jaots-2016-0105
- T. Rusianto, M. Wazizwildan and K.A. Kusmono, Indian J. Eng. Mater. Sci., 22, 175 (2015).
- C.J. Goss, Phys Chem. Miner., 16, 164 (1988); https://doi.org/10.1007/BF00203200
- M. Lenglet and B. Lefez, Solid State Commun., 98, 689 (1996); https://doi.org/10.1016/0038-1098(96)00109-3
- Y.F. Chen, C.Y. Lee, M.Y. Yeng and H.T. Chiu, J. Cryst. Growth, 247, 363 (2003); https://doi.org/10.1016/S0022-0248(02)01938-3
- T. Lo’pez, J.A. Moreno, R. Gómez, X. Bokhimi, J.A. Wang, H. YeeMadeira, G. Pecchi and P. Reyes, J. Mater. Chem., 12, 714 (2002); https://doi.org/10.1039/b105724n
- T. Tatarchuk, M. Bououdina, W. Macyk, O. Shyichuk, N. Paliychuk, I. Yaremiy, B. Al-Najar and M. Pacia, Nanoscale Res. Lett., 12, 141 (2017); https://doi.org/10.1186/s11671-017-1899-x
- S. Sagadevana, Z.Z. Chowdhury and R.F. Rafique, Mater. Res., 21, e20160533 (2018); https://doi.org/10.1590/1980-5373-mr-2016-0533
- R. Kumar, F. Singh, B. Angadi, J.-W. Choi, W.-K. Choi, K. Jeong, J.- H. Song, M.W. Khan, J.P. Srivastava, A. Kumar and R.P. Tandon, J. Appl. Phys., 100, 113708 (2006); https://doi.org/10.1063/1.2399893
- R. Joyce Stella, G. Thirumala Rao, V. Pushpa Manjari, B. Babu, C. Rama Krishna and R.V.S.S.N. Ravikumar, J. Alloys Compd., 628, 39 (2015); https://doi.org/10.1016/j.jallcom.2014.11.201
- P. Khemthong, P. Photai and N. Grisdanurak, Int. J. Hydrogen Energy, 38, 15992 (2013); https://doi.org/10.1016/j.ijhydene.2013.10.065
- S. Wei, Y. Chen, Y. Ma and Z. Shao, J. Mol. Catal. Chem., 331, 112 (2010); https://doi.org/10.1016/j.molcata.2010.08.011
- Y. Leng, W. Wang, L. Zhang, F. Zabihi and Y. Zhao, J. Supercrit. Fluids, 91, 61 (2014); https://doi.org/10.1016/j.supflu.2014.04.012
- J. Han, Y. Liu, N. Singhal, L. Wang and W. Gao, Chem. Eng. J., 213, 150 (2012); https://doi.org/10.1016/j.cej.2012.09.066
- C.H. Wu and C.L. Chang, J. Hazard. Mater., 128, 265 (2006); https://doi.org/10.1016/j.jhazmat.2005.08.013
- J. Wang, J. Yang, X. Li, D. Wang, B. Wei, H. Song, X. Li and S. Fu, Physica E, 75, 66 (2016); https://doi.org/10.1016/j.physe.2015.08.040
- A.-W. Xu, Y. Gao and H.-Q. Liu, J. Catal., 207, 151 (2002); https://doi.org/10.1006/jcat.2002.3539
- S. Yao, S. Song, Z. Shi and S. Wang, Desalination Water Treat., 51, 7101 (2013); https://doi.org/10.1080/19443994.2013.791784
- X. Yang, W. Chen, J. Huang, Y. Zhou, Y. Zhu and C. Li, Sci. Rep., 5, 10632 (2015); https://doi.org/10.1038/srep10632
References
D. Chakraborty and K. Mukhopadhyay, Water Pollution and Abatement Policy in India, A Study from an Economic Perspective; In: Book Series: Global Issues in Water Policy, Springer Netherlands (2014).
W. Zhang and C.W. Wu, Chem. Pap., 68, 330 (2014); https://doi.org/10.2478/s11696-013-0444-3
S. Nagai, Science, 130, 1188 (1959); https://doi.org/10.1126/science.130.3383.1188-a
H. Lin, H. Zhang and L. Hou, J. Hazard. Mater., 276, 182 (2014); https://doi.org/10.1016/j.jhazmat.2014.05.021
Y.S. Na, C.H. Lee, T.K. Lee, S.W. Lee, Y.S. Park, Y.K. Oh, S.H. Park and S.K. Song, Korean J. Chem. Eng., 22, 246 (2005); https://doi.org/10.1007/BF02701492
A. Baban, Clean Soil Air Water, 41, 976 (2013); https://doi.org/10.1002/clen.201200145
X. Zhang, M. Lu, M.A. Mohamed Idrus, C. Crombie and J. Veeriah, Process Safe Environ., 126, 18 (2019); https://doi.org/10.1016/j.psep.2019.03.024
O. Bello, Y. Hamam and K. Djouani, Alexandria Eng. J., 53, 939 (2014); https://doi.org/10.1016/j.aej.2014.08.002
H.T. Madsen, Membrane Filtration in Water Treatment: Removal of Micropollutants, In: Chemistry of Advanced Environmental Purification Processes of Water, Elsevier Science: Holland, pp. 199-248 (2014).
R. Suresh, K. Giribabu, R. Manigandan, L. Vijayalakshmi, A. Stephen and V. Narayanan, AIP Conf. Proc., 1576, 122 (2014); https://doi.org/10.1063/1.4861998
A.B. Chin and I. Yaacob, J. Mater. Process. Technol., 191, 235 (2007); https://doi.org/10.1016/j.jmatprotec.2007.03.011
S. Buddee, C. Suwanchawalit and S. Wongnawa, Dig. J. Nanomater.Biostruct., 12, 829 (2017).
Xuan Sang Nguyen, J. Surf. Eng. Mater. Adv. Technol., 8, 1 (2018).
F. Fu and Q. Wang, J. Environ. Manage., 92, 407 (2011); https://doi.org/10.1016/j.jenvman.2010.11.011
R. Saravanan, F. Gracia and A. Stephen, Basic Principles, Mechanism, and Challenges of Photocatalysis In: Nanocomposites for Visible Lightinduced Photocatalysis, Springer International Publishing, Chap. 2 (2017).
B. Prasad, C. Ghosh, A. Chakraborty, N. Bandyopadhyay and R.K. Ray, Desalination, 274, 105 (2011); https://doi.org/10.1016/j.desal.2011.01.081
P. Benjwal and K.K. Kar, J. Environ. Chem. Eng., 3, 2076 (2015); https://doi.org/10.1016/j.jece.2015.07.009
M.J. Allen, V.C. Tung and R.B. Kaner, Chem. Rev., 110, 132 (2010); https://doi.org/10.1021/cr900070d
A.K. Geim and K.S. Novoselov, Nat. Mater., 6, 183 (2007); https://doi.org/10.1038/nmat1849
A.H. Rezayan, M. Mousavi, S. Kheirjou, G. Amoabediny, M.S. Ardestani and J. Mohammadnejad, J. Magn. Mater., 420, 210 (2016); https://doi.org/10.1016/j.jmmm.2016.07.003
M. Arefi, D. Saberi, M. Karimi and A. Heydari, ACS Comb. Sci., 17, 341 (2015); https://doi.org/10.1021/co5001844
X. Jian, B. Wu, Y. Wei, S.X. Dou, X. Wang, W. He and N. Mahmood, ACS Appl. Mater. Interfaces, 8, 6101 (2016); https://doi.org/10.1021/acsami.6b00388
K. Kalantari, M. Ahmad, H. Masoumi, K. Shameli, M. Basri and R. Khandanlou, Int. J. Mol. Sci., 15, 12913 (2014); https://doi.org/10.3390/ijms150712913
Y.T. Prabhu, K.V. Rao, B.S. Kumari, V.S.S. Kumar and T. Pavani, Int. Nano Lett., 5, 85 (2015); https://doi.org/10.1007/s40089-015-0141-z
L.T. Thu Huong, N.H. Nam, D.H. Doan, H.T. My Nhung, B.T. Quang, P.H. Nam, P.Q. Thong, N.X. Phuc and H.P. Thu, Mater. Chem. Phys., 172, 98 (2016); https://doi.org/10.1016/j.matchemphys.2015.12.065
Y. Chen, X. Quan, Z. Wang, C. Lee, Z.Z. Wang, P. Tao, C. Song, J. Wu, W. Shang and T. Deng, J. Mater. Chem. A Mater. Energy Sustain., 4, 17503 (2016); https://doi.org/10.1039/C6TA07773K
N. Sanaeifar, M. Rabiee, M. Abdolrahim, M. Tahriri, D. Vashaee and L. Tayebi, Anal. Biochem., 519, 19 (2017); https://doi.org/10.1016/j.ab.2016.12.006
A. Emanalzahrani, Asian J. Chem., 29, 2799 (2017); https://doi.org/10.14233/ajchem.2017.20959
P. Mandal and A.P. Chattopadhyay, Dalton Trans., 44, 11444 (2015); https://doi.org/10.1039/C5DT01260K
C.T. Yavuz, J.T. Mayo, W.W. Yu, A. Prakash, J.C. Falkner, S. Yean, L. Cong, H.J. Shipley, A. Kan, M. Tomson, D. Natelson and V.L. Colvin, Science, 314, 964 (2006); https://doi.org/10.1126/science.1131475
S.A. Kulkarni, P.S. Sawadh and P.K. Palei, J. Korean Chem. Soc., 58, 100 (2014); https://doi.org/10.5012/jkcs.2014.58.1.100
H. Wei and E. Wang, Anal. Chem., 80, 2250 (2008); https://doi.org/10.1021/ac702203f
P.M. Anjana, M.R. Bindhu, M. Umadevi and R.B. Rakhi, J. Mater. Sci. Mater. Electron., 29, 6040 (2018); https://doi.org/10.1007/s10854-018-8578-2
M. O’Hara, J.C. Carter, C.L. Warner, M.G. Warner and R.S. Addleman, RSC Adv., 6, 105239 (2016); https://doi.org/10.1039/C6RA22262E
X.J. Sun, F.T. Liu and Q.H. Jiang, Mater. Sci. Forum, 688, 364 (2011); https://doi.org/10.4028/www.scientific.net/MSF.688.364
T. Kamakshi, G.S. Sundari, H. Erothu and R.S. Singh, Rasayan J. Chem., 12, 531 (2019); https://doi.org/10.31788/RJC.2019.1225054
M. Mohapatra, B. Pandey, S. Anand, R.P. Das and H.C. Verma, J. Magn. Magn. Mater., 295, 44 (2005); https://doi.org/10.1016/j.jmmm.2004.12.036
S. Larumbe, C. Gomez-Polo, J.I. Pérez-Landazábal, A. García-Prieto, J. Alonso, M.L. Fdez-Gubieda, D. Cordero and J. Gómez, J. Nanosci. Nanotechnol., 12, 2652 (2012); https://doi.org/10.1166/jnn.2012.5769
K. Recko, U. Klekotka, B. Kalska-Szostko, D. Soloviov, D. Satula and J. Waliszewski, Acta Phys. Pol. A, 134, 998 (2018); https://doi.org/10.12693/APhysPolA.134.998
X. Huang, C. Xu, J. Ma and F. Chen, Adv. Powder Technol., 29, 796 (2018); https://doi.org/10.1016/j.apt.2017.12.025
M. Yousefi and P. Alimard, Bull. Chem. Soc. Ethiop., 27, 49 (2013); https://doi.org/10.4314/bcse.v27i1.5
R. Amadelli, L. Samiolo, A. Maldotti, A. Molinari, M. Valigi and D. Gazzoli, Int. J. Photoenergy, 2008, 853753 (2008); https://doi.org/10.1155/2008/853753
B. Yang, Q. Zhang, X. Ma, J. Kang, J. Shi and B. Tang, Nano Res., 9, 1879 (2016); https://doi.org/10.1007/s12274-016-1080-3
X. Sun, F. Liu and Q. Jiang, Mater. Sci. Forum, 688, 364 (2011); https://doi.org/10.4028/www.scientific.net/MSF.688.364
M. Aghazadeh, I. Karimzadeh, M.R. Ganjali and A. Behzad, J. Mater. Sci.: Mater Electron., 28, 18121 (2017); https://doi.org/10.1007/s10854-017-7757-x
Y.D. Susanti, N. Afifah and R. Saleh, AIP Conf. Proc., 1862, 030039 (2017); https://doi.org/10.1063/1.4991143
P.K. Boruah, P. Borthakur, G. Darabdhara, C.K. Kamaja, I. Karbhal, M.V. Shelke, P. Phukan, D. Saikia and M.R. Das, RSC Adv., 6, 11049 (2016); https://doi.org/10.1039/C5RA25035H
K. Wang, Y. Yang, T.C. Zhang, Y. Liang and Q. Wang, RSC Adv., 9, 17664 (2019); https://doi.org/10.1039/C9RA01671F
K. Wang, L. Yu, S. Yin, H. Li and H. Li, Pure Appl. Chem., 81, 2327 (2009); https://doi.org/10.1351/PAC-CON-08-11-23
I.F. Ertis and I. Boz, Modern Res. Catal., 6, 1 (2017); https://doi.org/10.4236/mrc.2017.61001
A. Paliwal, R. Banu, R. Ameta and S.C. Ameta, J. Appl. Chem., 6, 967 (2017).
H.D. Nguyen, T.D. Nguyen, D.H. Nguyen and P.T. Nguyen, Adv. Nat. Sci. Nanosci. Nanotechnol., 5, 035017 (2014); https://doi.org/10.1088/2043-6262/5/3/035017
N.Z. Logar and V. Kaucic, Acta Chim. Slov., 53, 117 (2006).
M.E. Davis, Nature, 417, 813 (2002); https://doi.org/10.1038/nature00785
G. Viruthagiri and P. Kannan, J. Mater. Res. Technol., 8, 127 (2019); https://doi.org/10.1016/j.jmrt.2017.06.011
P.K. Boruah, P. Borthakur, G. Darabdhara, C.K. Kamaja, I. Karbhal, M.V. Shelke, P. Phukan, D. Saikia and M.R. Das, RSC Adv., 6, 11049 (2016); https://doi.org/10.1039/C5RA25035H
A. Lassoued, M.S. Lassoued, S. García-Granda, B. Dkhil, S. Ammar and A. Gadri, J. Mater. Sci. Mater. Electron., 29, 5726 (2018); https://doi.org/10.1007/s10854-018-8543-0
P. Prasannalakshmi and N. Shanmugam, Spectrochim. Acta A Mol. Biomol. Spectrosc., 175, 1 (2017); https://doi.org/10.1016/j.saa.2016.12.018
C.-M. Hung C.-W. Chen, Y.-Z. Jhuang and C.-D. Dong, J. Adv. Oxid. Technol., 19, 43 (2016); https://doi.org/10.1515/jaots-2016-0105
T. Rusianto, M. Wazizwildan and K.A. Kusmono, Indian J. Eng. Mater. Sci., 22, 175 (2015).
C.J. Goss, Phys Chem. Miner., 16, 164 (1988); https://doi.org/10.1007/BF00203200
M. Lenglet and B. Lefez, Solid State Commun., 98, 689 (1996); https://doi.org/10.1016/0038-1098(96)00109-3
Y.F. Chen, C.Y. Lee, M.Y. Yeng and H.T. Chiu, J. Cryst. Growth, 247, 363 (2003); https://doi.org/10.1016/S0022-0248(02)01938-3
T. Lo’pez, J.A. Moreno, R. Gómez, X. Bokhimi, J.A. Wang, H. YeeMadeira, G. Pecchi and P. Reyes, J. Mater. Chem., 12, 714 (2002); https://doi.org/10.1039/b105724n
T. Tatarchuk, M. Bououdina, W. Macyk, O. Shyichuk, N. Paliychuk, I. Yaremiy, B. Al-Najar and M. Pacia, Nanoscale Res. Lett., 12, 141 (2017); https://doi.org/10.1186/s11671-017-1899-x
S. Sagadevana, Z.Z. Chowdhury and R.F. Rafique, Mater. Res., 21, e20160533 (2018); https://doi.org/10.1590/1980-5373-mr-2016-0533
R. Kumar, F. Singh, B. Angadi, J.-W. Choi, W.-K. Choi, K. Jeong, J.- H. Song, M.W. Khan, J.P. Srivastava, A. Kumar and R.P. Tandon, J. Appl. Phys., 100, 113708 (2006); https://doi.org/10.1063/1.2399893
R. Joyce Stella, G. Thirumala Rao, V. Pushpa Manjari, B. Babu, C. Rama Krishna and R.V.S.S.N. Ravikumar, J. Alloys Compd., 628, 39 (2015); https://doi.org/10.1016/j.jallcom.2014.11.201
P. Khemthong, P. Photai and N. Grisdanurak, Int. J. Hydrogen Energy, 38, 15992 (2013); https://doi.org/10.1016/j.ijhydene.2013.10.065
S. Wei, Y. Chen, Y. Ma and Z. Shao, J. Mol. Catal. Chem., 331, 112 (2010); https://doi.org/10.1016/j.molcata.2010.08.011
Y. Leng, W. Wang, L. Zhang, F. Zabihi and Y. Zhao, J. Supercrit. Fluids, 91, 61 (2014); https://doi.org/10.1016/j.supflu.2014.04.012
J. Han, Y. Liu, N. Singhal, L. Wang and W. Gao, Chem. Eng. J., 213, 150 (2012); https://doi.org/10.1016/j.cej.2012.09.066
C.H. Wu and C.L. Chang, J. Hazard. Mater., 128, 265 (2006); https://doi.org/10.1016/j.jhazmat.2005.08.013
J. Wang, J. Yang, X. Li, D. Wang, B. Wei, H. Song, X. Li and S. Fu, Physica E, 75, 66 (2016); https://doi.org/10.1016/j.physe.2015.08.040
A.-W. Xu, Y. Gao and H.-Q. Liu, J. Catal., 207, 151 (2002); https://doi.org/10.1006/jcat.2002.3539
S. Yao, S. Song, Z. Shi and S. Wang, Desalination Water Treat., 51, 7101 (2013); https://doi.org/10.1080/19443994.2013.791784
X. Yang, W. Chen, J. Huang, Y. Zhou, Y. Zhu and C. Li, Sci. Rep., 5, 10632 (2015); https://doi.org/10.1038/srep10632