Copyright (c) 2020 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Analysis of Organochlorine Pesticides in Drinking Water and their Degradation by Synthesized Iron oxide Nanoparticles
Corresponding Author(s) : Bharti
Asian Journal of Chemistry,
Vol. 32 No. 5 (2020): Vol 32 Issue 5
Abstract
This study reports the analysis of drinking water sources of river Krishni catchment, contaminated by organochlorine pesticides. Iron oxide nanoparticles had been synthesized through co-precipitation method and utilized for the degradation of organochlorine pesticides using advanced oxidation processes. The sharp and narrow peaks of X-ray diffraction patterns revealed the crystalline nature of synthesized iron oxide nanoparticles having size less than 100 nm. The nanoparticles were also characterized using TEM, UV-Vis and IR spectral analysis. Liquid-liquid extraction and GC-MS were used for the detection analysis of pesticides. GC-MS technique was used for further quantitative analysis of 19 pesticides. The degradation analysis showed the maximum amount of degradation (up to 98.38 %) of organochlorine pesticides.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- P.K. Mutiyar, A.K. Mittal and A. Pekdeger, Drink. Water Eng. Sci., 4, 51 (2011); https://doi.org/10.5194/dwes-4-51-2011
- N. Sankararamakrishnan, A.K. Sharma and R. Sanghi, Environ. Int., 31, 113 (2005); https://doi.org/10.1016/j.envint.2004.08.001
- B. Loganathan and K. Kannan, Ambio, 23, 187 (1994).
- D. Pimentel, J. Agric. Environ. Ethics, 8, 17 (1995); https://doi.org/10.1007/BF02286399
- M. Safari, M.H. Rostami, M. Alizadeh, A. Alizadehbirjandi, S.A.A. Nakhli and R. Aminzadeh, J. Environ. Health Sci. Eng., 12, 1 (2014); https://doi.org/10.1186/2052-336X-12-1
- T.T. Firozjaee, N. Mehrdadi, M. Baghdadi and G.R.N. Bidhendi, Int. J. Nanosci. Nanotechnol., 14, 43 (2018).
- J. Senthilnathan and L. Philip, J. Environ. Sci. Health, 44, 262 (2009); https://doi.org/10.1080/03601230902728328
- D. De, S.M. Mandal, J. Bhattacharya, S. Ram and S.K. Roy, J. Environ. Sci. Health, 44, 155 (2009); https://doi.org/10.1080/10934520802539756
- S.K. Maji, N. Mukherjee, A. Mondal and B. Adhikary, Polyhedron, 33, 145 (2012); https://doi.org/10.1016/j.poly.2011.11.017
- K. Dhakyanaika and P. Kumara, J. Eng. Sci. Technol., 3, 14 (2010); https://doi.org/10.25103/jestr.031.03
- H. Lewis, Hindon River: Gasping for Breath, Janhit Foundation-Hindon Report, vol. 4, pp. 20-24 (2007).
- O.S. Fatoki and R.O. Awofolu, J. Chromatogr. A, 983, 225 (2003); https://doi.org/10.1016/S0021-9673(02)01730-2
- G. Nabiyouni, S. Sharifi, D. Ghanbari and M.S. Niasari, J. Nanostruct., 4, 317 (2014); https://doi.org/10.7508/JNS.2014.03.009
- M.I. Khalil, Arab. J. Chem., 8, 279 (2015); https://doi.org/10.1016/j.arabjc.2015.02.008
- D. Hanawalt, H.W. Rinn and L.K. Frevel, Ind. Eng. Chem. Anal. Ed., 10, 457 (1938); https://doi.org/10.1021/ac50125a001
- A. Lassoued, B. Dkhil, A. Gadri and S. Ammar, Results in Physics, 7, 3007 (2017); https://doi.org/10.1016/j.rinp.2017.07.066
- M. Rani, U. Shanker and V. Jassal, J. Environ. Manage., 190, 208 (2017); https://doi.org/10.1016/j.jenvman.2016.12.068
References
P.K. Mutiyar, A.K. Mittal and A. Pekdeger, Drink. Water Eng. Sci., 4, 51 (2011); https://doi.org/10.5194/dwes-4-51-2011
N. Sankararamakrishnan, A.K. Sharma and R. Sanghi, Environ. Int., 31, 113 (2005); https://doi.org/10.1016/j.envint.2004.08.001
B. Loganathan and K. Kannan, Ambio, 23, 187 (1994).
D. Pimentel, J. Agric. Environ. Ethics, 8, 17 (1995); https://doi.org/10.1007/BF02286399
M. Safari, M.H. Rostami, M. Alizadeh, A. Alizadehbirjandi, S.A.A. Nakhli and R. Aminzadeh, J. Environ. Health Sci. Eng., 12, 1 (2014); https://doi.org/10.1186/2052-336X-12-1
T.T. Firozjaee, N. Mehrdadi, M. Baghdadi and G.R.N. Bidhendi, Int. J. Nanosci. Nanotechnol., 14, 43 (2018).
J. Senthilnathan and L. Philip, J. Environ. Sci. Health, 44, 262 (2009); https://doi.org/10.1080/03601230902728328
D. De, S.M. Mandal, J. Bhattacharya, S. Ram and S.K. Roy, J. Environ. Sci. Health, 44, 155 (2009); https://doi.org/10.1080/10934520802539756
S.K. Maji, N. Mukherjee, A. Mondal and B. Adhikary, Polyhedron, 33, 145 (2012); https://doi.org/10.1016/j.poly.2011.11.017
K. Dhakyanaika and P. Kumara, J. Eng. Sci. Technol., 3, 14 (2010); https://doi.org/10.25103/jestr.031.03
H. Lewis, Hindon River: Gasping for Breath, Janhit Foundation-Hindon Report, vol. 4, pp. 20-24 (2007).
O.S. Fatoki and R.O. Awofolu, J. Chromatogr. A, 983, 225 (2003); https://doi.org/10.1016/S0021-9673(02)01730-2
G. Nabiyouni, S. Sharifi, D. Ghanbari and M.S. Niasari, J. Nanostruct., 4, 317 (2014); https://doi.org/10.7508/JNS.2014.03.009
M.I. Khalil, Arab. J. Chem., 8, 279 (2015); https://doi.org/10.1016/j.arabjc.2015.02.008
D. Hanawalt, H.W. Rinn and L.K. Frevel, Ind. Eng. Chem. Anal. Ed., 10, 457 (1938); https://doi.org/10.1021/ac50125a001
A. Lassoued, B. Dkhil, A. Gadri and S. Ammar, Results in Physics, 7, 3007 (2017); https://doi.org/10.1016/j.rinp.2017.07.066
M. Rani, U. Shanker and V. Jassal, J. Environ. Manage., 190, 208 (2017); https://doi.org/10.1016/j.jenvman.2016.12.068