Copyright (c) 2020 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Concentration of Sulfuric Acid from Spent Acidic Liquor by Cascaded Electrodialysis Using an Interpolymer Anion Exchange Membrane
Corresponding Author(s) : Beena Sheth
Asian Journal of Chemistry,
Vol. 32 No. 5 (2020): Vol 32 Issue 5
Abstract
Cascaded electrodialysis system has been developed for increasing the concentration of sulfuric acid from aqueous solution using an interpolymer anion exchange (IPA) membrane. Enrichment process was carried out in a cascade of six electrodialyzers at 20.2 mA/cm2 current density. The performance of the process was evaluated rigorously in terms of current efficiency, voltage requirements and processability to enrich the acid concentration. The bench-scale experimental results exhibited the ability of membrane to perform as a low proton leakage membrane and to enrich the sulfuric acid concentration up to 27.93 wt. %. The higher values of current efficiencies were reported to be in the range of 50 to 60 %. Proton leakage through the membrane, acid back diffusion, concentration polarization and solution conductivity were considered to be the limiting factors for acid enrichment and their effects were found significant on current efficiency and voltage requirement.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Agrawal and K.K. Sahu, J. Hazard. Mater., 171, 61 (2009); https://doi.org/10.1016/j.jhazmat.2009.06.099
- Z. Zhou and Z. Liu, Chem. Eng. Process. Process Intensif, 46, 1310 (2007); https://doi.org/10.1016/j.cep.2006.10.008
- Y. Yongtao, N. Ping, Q. Guangfei, L. Junyan and Z. Qian, J. Electrochem. Soc., 162, E141 (2015); https://doi.org/10.1149/2.0591509jes
- H. Jaroszek, W. Mikolajczak, M. Nowak and B. Pisarska, Desalination Water Treat., 64, 223 (2017); https://doi.org/10.5004/dwt.2017.11385
- R. Xie, P. Ning, G. Qu, J. Li, M. Ren, C. Du, H. Gao and Z. Li, Chem. Eng. J., 341, 298 (2018); https://doi.org/10.1016/j.cej.2018.02.012
- M.C. Martí-Calatayud, D.C. Buzzi, M. García-Gabaldón, E. Ortega, A.M. Bernardes, J.A.S. Tenório and V. Pérez-Herranz, Desalination, 343, 120 (2014); https://doi.org/10.1016/j.desal.2013.11.031
- A. Chekioua and R. Delimi, Energy Procedia, 74, 1418 (2015); https://doi.org/10.1016/j.egypro.2015.07.789
- A.T. Cherif, C. Gavach, T. Cohen, P. Dagard and L. Albert, Hydrometallurgy, 21, 191 (1988); https://doi.org/10.1016/0304-386X(88)90004-7
- A.E. Simpson and C.A. Buckley, Desalination, 70, 431 (1988); https://doi.org/10.1016/0011-9164(88)85071-9
- Y. Tanaka, J. Membr. Sci., 216, 149 (2003); https://doi.org/10.1016/S0376-7388(03)00067-X
- X.T. Le, J. Membr. Sci., 397-398, 66 (2012); https://doi.org/10.1016/j.memsci.2012.01.011
- M. La Cerva, L. Gurreri, M. Tedesco, A. Cipollina, M. Ciofalo, A. Tamburini and G. Micale, Desalination, 445, 138 (2018); https://doi.org/10.1016/j.desal.2018.07.028
- G.S. Luo, S. Pan and J.G. Liu, Desalination, 150, 227 (2002); https://doi.org/10.1016/S0011-9164(02)00978-5
- E. Güler Akgemci, M. Ersöz and T. Atalay, Sep. Sci. Technol., 39, 165 (2005); https://doi.org/10.1081/SS-120027407
- B. Sheth and K. Nath, Korean J. Chem. Eng., 35, 1878 (2018); https://doi.org/10.1007/s11814-018-0091-z
- H. Strathmann, Ion Exchange Membrane Separation Processes, Elsevier, edn 1 (2004).
- B. Sheth and K. Nath, Chem. Eng. Commun., 207, 295 (2020); https://doi.org/10.1080/00986445.2019.1587611
- H. Iken, R. Basseguy, A. Guenbour and A.B. Bachir, Electrochim. Acta, 52, 2580 (2007); https://doi.org/10.1016/j.electacta.2006.09.013
- R.K. Nagarale, G.S. Gohil and V.K. Shahi, Adv. Colloid Interface Sci., 119, 97 (2006); https://doi.org/10.1016/j.cis.2005.09.005
- S. Koter, M. Kultys, B. Gilewicz-Lukasik and I. Koter, Desalination, 342, 75 (2014); https://doi.org/10.1016/j.desal.2013.10.025
- N. Zouhri, Am. J. Appl. Chem., 1, 75 (2013); https://doi.org/10.11648/j.ajac.20130104.15
- J. Kroupa, J. Kincl and J. Cakl, Desalination Water Treat., 56, 3238 (2015); https://doi.org/10.1080/19443994.2014.980972
- V. Baltazar, G.B. Harris and C.W. White, Hydrometallurgy, 30, 463 (1992); https://doi.org/10.1016/0304-386X(92)90100-E
- Y. Lorrain, G. Pourcelly and C. Gavach, Desalination, 109, 231 (1997); https://doi.org/10.1016/S0011-9164(97)00069-6
- H.E. Darling, J. Chem. Eng. Data, 9, 421 (1964); https://doi.org/10.1021/je60022a041
- Y. Asari, N. Shoji, K. Miyoshi, D. Umeno and K. Saito, J. Ion Exchange, 22, 53 (2011); https://doi.org/10.5182/jaie.22.53
- L. Cifuentes, I. Garcia, R. Ortiz and J.M. Casas, Sep. Purif. Technol., 50, 167 (2006); https://doi.org/10.1016/j.seppur.2005.11.021
References
A. Agrawal and K.K. Sahu, J. Hazard. Mater., 171, 61 (2009); https://doi.org/10.1016/j.jhazmat.2009.06.099
Z. Zhou and Z. Liu, Chem. Eng. Process. Process Intensif, 46, 1310 (2007); https://doi.org/10.1016/j.cep.2006.10.008
Y. Yongtao, N. Ping, Q. Guangfei, L. Junyan and Z. Qian, J. Electrochem. Soc., 162, E141 (2015); https://doi.org/10.1149/2.0591509jes
H. Jaroszek, W. Mikolajczak, M. Nowak and B. Pisarska, Desalination Water Treat., 64, 223 (2017); https://doi.org/10.5004/dwt.2017.11385
R. Xie, P. Ning, G. Qu, J. Li, M. Ren, C. Du, H. Gao and Z. Li, Chem. Eng. J., 341, 298 (2018); https://doi.org/10.1016/j.cej.2018.02.012
M.C. Martí-Calatayud, D.C. Buzzi, M. García-Gabaldón, E. Ortega, A.M. Bernardes, J.A.S. Tenório and V. Pérez-Herranz, Desalination, 343, 120 (2014); https://doi.org/10.1016/j.desal.2013.11.031
A. Chekioua and R. Delimi, Energy Procedia, 74, 1418 (2015); https://doi.org/10.1016/j.egypro.2015.07.789
A.T. Cherif, C. Gavach, T. Cohen, P. Dagard and L. Albert, Hydrometallurgy, 21, 191 (1988); https://doi.org/10.1016/0304-386X(88)90004-7
A.E. Simpson and C.A. Buckley, Desalination, 70, 431 (1988); https://doi.org/10.1016/0011-9164(88)85071-9
Y. Tanaka, J. Membr. Sci., 216, 149 (2003); https://doi.org/10.1016/S0376-7388(03)00067-X
X.T. Le, J. Membr. Sci., 397-398, 66 (2012); https://doi.org/10.1016/j.memsci.2012.01.011
M. La Cerva, L. Gurreri, M. Tedesco, A. Cipollina, M. Ciofalo, A. Tamburini and G. Micale, Desalination, 445, 138 (2018); https://doi.org/10.1016/j.desal.2018.07.028
G.S. Luo, S. Pan and J.G. Liu, Desalination, 150, 227 (2002); https://doi.org/10.1016/S0011-9164(02)00978-5
E. Güler Akgemci, M. Ersöz and T. Atalay, Sep. Sci. Technol., 39, 165 (2005); https://doi.org/10.1081/SS-120027407
B. Sheth and K. Nath, Korean J. Chem. Eng., 35, 1878 (2018); https://doi.org/10.1007/s11814-018-0091-z
H. Strathmann, Ion Exchange Membrane Separation Processes, Elsevier, edn 1 (2004).
B. Sheth and K. Nath, Chem. Eng. Commun., 207, 295 (2020); https://doi.org/10.1080/00986445.2019.1587611
H. Iken, R. Basseguy, A. Guenbour and A.B. Bachir, Electrochim. Acta, 52, 2580 (2007); https://doi.org/10.1016/j.electacta.2006.09.013
R.K. Nagarale, G.S. Gohil and V.K. Shahi, Adv. Colloid Interface Sci., 119, 97 (2006); https://doi.org/10.1016/j.cis.2005.09.005
S. Koter, M. Kultys, B. Gilewicz-Lukasik and I. Koter, Desalination, 342, 75 (2014); https://doi.org/10.1016/j.desal.2013.10.025
N. Zouhri, Am. J. Appl. Chem., 1, 75 (2013); https://doi.org/10.11648/j.ajac.20130104.15
J. Kroupa, J. Kincl and J. Cakl, Desalination Water Treat., 56, 3238 (2015); https://doi.org/10.1080/19443994.2014.980972
V. Baltazar, G.B. Harris and C.W. White, Hydrometallurgy, 30, 463 (1992); https://doi.org/10.1016/0304-386X(92)90100-E
Y. Lorrain, G. Pourcelly and C. Gavach, Desalination, 109, 231 (1997); https://doi.org/10.1016/S0011-9164(97)00069-6
H.E. Darling, J. Chem. Eng. Data, 9, 421 (1964); https://doi.org/10.1021/je60022a041
Y. Asari, N. Shoji, K. Miyoshi, D. Umeno and K. Saito, J. Ion Exchange, 22, 53 (2011); https://doi.org/10.5182/jaie.22.53
L. Cifuentes, I. Garcia, R. Ortiz and J.M. Casas, Sep. Purif. Technol., 50, 167 (2006); https://doi.org/10.1016/j.seppur.2005.11.021