Copyright (c) 2020 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis, XRD, EXAFS and XANES Study of Cu(II) Complexes of Aniline Dithiocarbamate
Corresponding Author(s) : Anurag Geete
Asian Journal of Chemistry,
Vol. 32 No. 3 (2020): Vol 32 Issue 3
Abstract
In present investigation, seven copper(II) complexes were synthesized using various aniline dithiocarbamate. The synthesized Cu(II) complexes were studied for different structural and chemical parameters using XRD, EXAFS and XANES. The output obtained from X-ray studies was synthesized using Athena and Origin 6.0 software. The results of the investigation were used in determining the structures of the synthesized complexes. The particle size of the synthesized complexes ranged between 46.7 and 125.3 nm. The lattice constant of Cu(II) complexes was found 3.61-3.62 Å.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Meija, T.B. Coplen, M. Berglund, W.A. Brand, P. De Bièvre, M. Gröning, N.E. Holden, J. Irrgeher, R.D. Loss, T. Walczyk and T. Prohaska, Pure Appl. Chem., 88, 265 (2016); https://doi.org/10.1515/pac-2015-0305
- F. William, H.J. Smith and F. Presuel-Moreno, Foundations of Materials Science and Engineering, McGraw-Hill Publishing, edn 5 (2006).
- R.B. Gordon, M. Bertram and T.E. Graedel, Proc. Natl. Acad. Sci. USA, 103, 1209 (2006); https://doi.org/10.1073/pnas.0509498103
- N. Krause, Modern Organocopper Chemistry, John Wiley & Sons (2002).
- R. Chinchilla and C. Nájera, Chem. Rev., 107, 874 (2007); https://doi.org/10.1021/cr050992x.
- T.C. Pleger, Proceedings of Twenty-Seventh Annual Meeting of the Forest History Association of Wisconsin, Oconto, WI, vol. 5, pp. 10-18 (2002).
- N.K. Kaushik, B. Bhushan and A.K. Sharma, Transition Met. Chem., 9, 250 (1984); https://doi.org/10.1007/BF00624466
- A.T. Odularu and P.A. Ajibade, 2019, Article ID 8260496 (2019); https://doi.org/10.1155/2019/8260496
- V. Milacic, D. Chen, L. Ronconi and K.R.L. Piwowar, D. Fregona and Q.P. Dou, Cancer Res., 66, 10478 (2006); https://doi.org/10.1158/0008-5472.CAN-06-3017
- A.J. Blake, L.M. Gilby, R.O. Gould, V. Lippolis, S. Parsons and M. Schröder, Acta Crystallogr., C54, 295 (1998); https://doi.org/10.1107/S0108270197014212
- B. Kersting, Z. Naturforschung B, 55, 961 (2000); https://doi.org/10.1515/znb-2000-1012
- I. Gürol, V. Ahsen and Ö. Bekâroglu, J. Chem. Soc., Dalton Trans., 2283 (1992); https://doi.org/10.1039/DT9920002283
- Z.H. Chohan, M. Praveen and A. Ghaffaf, Inorg. Met.-Org. Chem., 28, 1673 (1998); https://doi.org/10.1080/00945719809349422.
- B.B. Kaul and K.B. Pandeya, J. Inorg. Nucl. Chem., 43, 1942 (1981); https://doi.org/10.1016/0022-1902(81)80419-8
- A. Mishra, A. Yadav, S. Ninama and A. Trivedi, J. Phys. Conf. Ser., 365, 1 (2012).
- S. Mohammad, A. Mishra, P. Sharma and S. Patidar, Int. J. Scient. Res. Phy. Appl. Sci., 6, 1 (2018).
- A. Geete, B.D. Shrivastava, A. Mishra and N. Parsai, Int. J. Scient. Res. Rev., 7, 1030 (2019).
References
J. Meija, T.B. Coplen, M. Berglund, W.A. Brand, P. De Bièvre, M. Gröning, N.E. Holden, J. Irrgeher, R.D. Loss, T. Walczyk and T. Prohaska, Pure Appl. Chem., 88, 265 (2016); https://doi.org/10.1515/pac-2015-0305
F. William, H.J. Smith and F. Presuel-Moreno, Foundations of Materials Science and Engineering, McGraw-Hill Publishing, edn 5 (2006).
R.B. Gordon, M. Bertram and T.E. Graedel, Proc. Natl. Acad. Sci. USA, 103, 1209 (2006); https://doi.org/10.1073/pnas.0509498103
N. Krause, Modern Organocopper Chemistry, John Wiley & Sons (2002).
R. Chinchilla and C. Nájera, Chem. Rev., 107, 874 (2007); https://doi.org/10.1021/cr050992x.
T.C. Pleger, Proceedings of Twenty-Seventh Annual Meeting of the Forest History Association of Wisconsin, Oconto, WI, vol. 5, pp. 10-18 (2002).
N.K. Kaushik, B. Bhushan and A.K. Sharma, Transition Met. Chem., 9, 250 (1984); https://doi.org/10.1007/BF00624466
A.T. Odularu and P.A. Ajibade, 2019, Article ID 8260496 (2019); https://doi.org/10.1155/2019/8260496
V. Milacic, D. Chen, L. Ronconi and K.R.L. Piwowar, D. Fregona and Q.P. Dou, Cancer Res., 66, 10478 (2006); https://doi.org/10.1158/0008-5472.CAN-06-3017
A.J. Blake, L.M. Gilby, R.O. Gould, V. Lippolis, S. Parsons and M. Schröder, Acta Crystallogr., C54, 295 (1998); https://doi.org/10.1107/S0108270197014212
B. Kersting, Z. Naturforschung B, 55, 961 (2000); https://doi.org/10.1515/znb-2000-1012
I. Gürol, V. Ahsen and Ö. Bekâroglu, J. Chem. Soc., Dalton Trans., 2283 (1992); https://doi.org/10.1039/DT9920002283
Z.H. Chohan, M. Praveen and A. Ghaffaf, Inorg. Met.-Org. Chem., 28, 1673 (1998); https://doi.org/10.1080/00945719809349422.
B.B. Kaul and K.B. Pandeya, J. Inorg. Nucl. Chem., 43, 1942 (1981); https://doi.org/10.1016/0022-1902(81)80419-8
A. Mishra, A. Yadav, S. Ninama and A. Trivedi, J. Phys. Conf. Ser., 365, 1 (2012).
S. Mohammad, A. Mishra, P. Sharma and S. Patidar, Int. J. Scient. Res. Phy. Appl. Sci., 6, 1 (2018).
A. Geete, B.D. Shrivastava, A. Mishra and N. Parsai, Int. J. Scient. Res. Rev., 7, 1030 (2019).