Copyright (c) 2020 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Wet Chemical Synthesis of CuO-PVA Hybrid Nanofluid Stabilized by Steric Repulsion
Corresponding Author(s) : Annie Aureen Albert
Asian Journal of Chemistry,
Vol. 32 No. 3 (2020): Vol 32 Issue 3
Abstract
CuO-PVA hybrid nanofluid was synthesized within PVA matrix by a simple wet chemical precipitation method. The influence of rate of addition of precursor (NaOH) on the structure, morphology and stability of CuO-PVA hybrid nanofluids were studied. The structure was confirmed by XRD and UV-visible spectroscopy. High resolution transmission microscopy (HRTEM) images revealed the formation of smaller particles for addition of precursor in solid form or rapid addition (RA), whereas slow addition of precursor (SA) resulted in uniform particle size. The selected area electron diffraction (SAED) pattern of sample SA shows rings with small bright spots indicating that the sample is nano crystalline. The SAED pattern of sample RA shows diffuse rings with lesser number of bright spots indicating that it is less crystalline. The stability studies indicate that both the samples were stable for more than one year.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Yan, H. Zhang, F. Wang, R. Ma, Y. Wu and R. Tian, J. Renew. Sustain. Energy, 10, 063704 (2018); https://doi.org/10.1063/1.5051207
- T.S. Krishnakumar, A. Sheeba, V. Mahesh and M.J.Prakash, Int. J. Refrig., 102, 55 (2019); https://doi.org/10.1016/j.ijrefrig.2019.02.035
- V. Mikkola, S. Puupponen, K. Saari, T. Ala-Nissila and A. Seppälä, Int. J. Therm. Sci., 117, 163 (2017); https://doi.org/10.1016/j.ijthermalsci.2017.03.024
- M. Javed, A.H. Shaik, T.A. Khan, M. Imran, A. Aziz, A.R. Ansari and M.R. Chandan, Heat Mass Transfer, 54, 3739 (2018); https://doi.org/10.1007/s00231-018-2399-y
- S.K. Soylu, I. Atmaca, M. Asiltürk and A. Dogan, Appl. Therm. Eng., 157, 113743 (2019); https://doi.org/10.1016/j.applthermaleng.2019.113743
- N. Navarrete, R. Mondragón, D. Wen, M.E. Navarro, Y. Ding and J.E. Juliá, Energy, 167, 912 (2019); https://doi.org/10.1016/j.energy.2018.11.037
- S. Harikrishnan, A. Devaraju, G.R. Kumar and S. Kalaiselvam, Mater. Today Proc., 9, 410 (2019); https://doi.org/10.1016/j.matpr.2019.02.170
- J.G. Monroea, S. Kumari, J.D. Fairley, K.B. Walters, M.J. Berge and S.M. Thompsonf, Int. J. Heat Mass Transfer, 132, 162 (2019); https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.096
- M.I. Youssif, R.M. El-Maghraby, S.M. Saleh and A. Elgibaly, Egypt. J. Pet., 27, 105 (2018); https://doi.org/10.1016/j.ejpe.2017.01.006
- L. Kong, J. Sun and Y. Bao, RSC Adv., 7, 12599 (2017); https://doi.org/10.1039/C6RA28243A
- L. Zhang, J. Xia, Q. Zhao, L. Liu and Z. Zhang, Small, 6, 537 (2010); https://doi.org/10.1002/smll.200901680
- F. Yu, Y. Chen, X. Liang, J. Xu, C. Lee, Q. Liang, P. Tao and T. Deng, Prog. Nat. Sci. Mater. Int., 27, 531 (2017); https://doi.org/10.1016/j.pnsc.2017.08.010
- D. Dey, P. Kumar and S. Samantaray, Heat Transfer, 46, 1413 (2017); https://doi.org/10.1002/htj.21282
- S. Yatsuya, Y. Tsukasaki, K. Mihama and R. Uyeda, J. Cryst. Growth, 45, 490 (1978); https://doi.org/10.1016/0022-0248(78)90481-5
- H. Akoh, Y. Tsukasaki, S. Yatsuya and A. Tasaki, J. Cryst. Growth, 45, 495 (1978); https://doi.org/10.1016/0022-0248(78)90482-7
- C.H. Lo, T.T. Tsung and L.C. Chen, J. Cryst. Growth, 277, 636 (2005); https://doi.org/10.1016/j.jcrysgro.2005.01.067
- G.J. Lee, C.K. Kim, M.K. Lee, C.K. Rhee, S. Kim and C. Kim, Thermochim. Acta, 542, 24 (2012); https://doi.org/10.1016/j.tca.2012.01.010
- T.X. Phuoc, Y. Soong and M.K. Chyu, Opt. Lasers Eng., 45, 1099 (2007); https://doi.org/10.1016/j.optlaseng.2007.06.005
- S.W. Lee, S.D. Park and I.C. Bang, Int. J. Heat Mass Transf., 55, 6908 (2012); https://doi.org/10.1016/j.ijheatmasstransfer.2012.07.004
- H. Zhu, D. Han, Z. Meng, D. Wu and C. Zhang, Nanoscale Res. Lett., 6, 181 (2011); https://doi.org/10.1186/1556-276X-6-181
- A.A. Albert, D.G.H. Samuel, V. Parthasarathy and K. Kiruthika, Chem. Eng. Commun., 207, 319 (2020); https://doi.org/10.1080/00986445.2019.1588731
- P. Yugandhar, T. Vasavi, Y. Jayavardhana Rao, P. Uma Maheswari Devi, G. Narasimha and N. Savithramma, J. Cluster Sci., 29, 743 (2018); https://doi.org/10.1007/s10876-018-1395-1
- C.M. Tang, Y.H. Tian and S.H. Hsu, Materials, 8, 4895 (2015); https://doi.org/10.3390/ma8084895
- S. Gandhi, R.H.H. Subramani, T. Ramakrishnan, A. Sivabalan, V. Dhanalakshmi, M.G. Nair and R. Anbarasan, J. Mater. Sci., 45, 1688 (2010); https://doi.org/10.1007/s10853-009-4158-4
- S. Felix, R.B.P. Chakkravarthy and A.N. Grace, IOP Conf. Series Mater. Sci. Eng., 73, 012115 (2015); https://doi.org/10.1088/1757-899X/73/1/012115
- O.G. Abdullah, B.S. Aziz, K.M. Omer and Y.M. Salih, J. Mater. Sci. Mater. Electron., 26, 5303 (2015); https://doi.org/10.1007/s10854-015-3067-3
References
S. Yan, H. Zhang, F. Wang, R. Ma, Y. Wu and R. Tian, J. Renew. Sustain. Energy, 10, 063704 (2018); https://doi.org/10.1063/1.5051207
T.S. Krishnakumar, A. Sheeba, V. Mahesh and M.J.Prakash, Int. J. Refrig., 102, 55 (2019); https://doi.org/10.1016/j.ijrefrig.2019.02.035
V. Mikkola, S. Puupponen, K. Saari, T. Ala-Nissila and A. Seppälä, Int. J. Therm. Sci., 117, 163 (2017); https://doi.org/10.1016/j.ijthermalsci.2017.03.024
M. Javed, A.H. Shaik, T.A. Khan, M. Imran, A. Aziz, A.R. Ansari and M.R. Chandan, Heat Mass Transfer, 54, 3739 (2018); https://doi.org/10.1007/s00231-018-2399-y
S.K. Soylu, I. Atmaca, M. Asiltürk and A. Dogan, Appl. Therm. Eng., 157, 113743 (2019); https://doi.org/10.1016/j.applthermaleng.2019.113743
N. Navarrete, R. Mondragón, D. Wen, M.E. Navarro, Y. Ding and J.E. Juliá, Energy, 167, 912 (2019); https://doi.org/10.1016/j.energy.2018.11.037
S. Harikrishnan, A. Devaraju, G.R. Kumar and S. Kalaiselvam, Mater. Today Proc., 9, 410 (2019); https://doi.org/10.1016/j.matpr.2019.02.170
J.G. Monroea, S. Kumari, J.D. Fairley, K.B. Walters, M.J. Berge and S.M. Thompsonf, Int. J. Heat Mass Transfer, 132, 162 (2019); https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.096
M.I. Youssif, R.M. El-Maghraby, S.M. Saleh and A. Elgibaly, Egypt. J. Pet., 27, 105 (2018); https://doi.org/10.1016/j.ejpe.2017.01.006
L. Kong, J. Sun and Y. Bao, RSC Adv., 7, 12599 (2017); https://doi.org/10.1039/C6RA28243A
L. Zhang, J. Xia, Q. Zhao, L. Liu and Z. Zhang, Small, 6, 537 (2010); https://doi.org/10.1002/smll.200901680
F. Yu, Y. Chen, X. Liang, J. Xu, C. Lee, Q. Liang, P. Tao and T. Deng, Prog. Nat. Sci. Mater. Int., 27, 531 (2017); https://doi.org/10.1016/j.pnsc.2017.08.010
D. Dey, P. Kumar and S. Samantaray, Heat Transfer, 46, 1413 (2017); https://doi.org/10.1002/htj.21282
S. Yatsuya, Y. Tsukasaki, K. Mihama and R. Uyeda, J. Cryst. Growth, 45, 490 (1978); https://doi.org/10.1016/0022-0248(78)90481-5
H. Akoh, Y. Tsukasaki, S. Yatsuya and A. Tasaki, J. Cryst. Growth, 45, 495 (1978); https://doi.org/10.1016/0022-0248(78)90482-7
C.H. Lo, T.T. Tsung and L.C. Chen, J. Cryst. Growth, 277, 636 (2005); https://doi.org/10.1016/j.jcrysgro.2005.01.067
G.J. Lee, C.K. Kim, M.K. Lee, C.K. Rhee, S. Kim and C. Kim, Thermochim. Acta, 542, 24 (2012); https://doi.org/10.1016/j.tca.2012.01.010
T.X. Phuoc, Y. Soong and M.K. Chyu, Opt. Lasers Eng., 45, 1099 (2007); https://doi.org/10.1016/j.optlaseng.2007.06.005
S.W. Lee, S.D. Park and I.C. Bang, Int. J. Heat Mass Transf., 55, 6908 (2012); https://doi.org/10.1016/j.ijheatmasstransfer.2012.07.004
H. Zhu, D. Han, Z. Meng, D. Wu and C. Zhang, Nanoscale Res. Lett., 6, 181 (2011); https://doi.org/10.1186/1556-276X-6-181
A.A. Albert, D.G.H. Samuel, V. Parthasarathy and K. Kiruthika, Chem. Eng. Commun., 207, 319 (2020); https://doi.org/10.1080/00986445.2019.1588731
P. Yugandhar, T. Vasavi, Y. Jayavardhana Rao, P. Uma Maheswari Devi, G. Narasimha and N. Savithramma, J. Cluster Sci., 29, 743 (2018); https://doi.org/10.1007/s10876-018-1395-1
C.M. Tang, Y.H. Tian and S.H. Hsu, Materials, 8, 4895 (2015); https://doi.org/10.3390/ma8084895
S. Gandhi, R.H.H. Subramani, T. Ramakrishnan, A. Sivabalan, V. Dhanalakshmi, M.G. Nair and R. Anbarasan, J. Mater. Sci., 45, 1688 (2010); https://doi.org/10.1007/s10853-009-4158-4
S. Felix, R.B.P. Chakkravarthy and A.N. Grace, IOP Conf. Series Mater. Sci. Eng., 73, 012115 (2015); https://doi.org/10.1088/1757-899X/73/1/012115
O.G. Abdullah, B.S. Aziz, K.M. Omer and Y.M. Salih, J. Mater. Sci. Mater. Electron., 26, 5303 (2015); https://doi.org/10.1007/s10854-015-3067-3