Copyright (c) 2020 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Sulfuric Activated Carbon of Black Cumin (Nigella sativa L.) Seeds for the Removal of Cadmium(II) and Methylene Blue Dye
Corresponding Author(s) : Patience Mapule Thabede
Asian Journal of Chemistry,
Vol. 32 No. 6 (2020): Vol 32 Issue 6
Abstract
Carbon from black cumin seeds was modified with 10 and 20% sulfuric acid to obtain the activated adsorbents. Pristine carbon from black cumin seeds, 10 and 20% H2SO4 activated carbon from black cumin seeds were labelled CBC, ACBC-10 and ACBC-20, respectively. The adsorbents were characterized by SEM, XRD, FTIR, TGA and BET. The adsorbents maximum trend for Cd(II) was ACBC-10 > ACBC-20 > CBC. The maximum capacity trend for methylene blue dye was ACBC-20 > ACBC-10 > CBC. The kinetic model best fitted pseudo second order for Cd(II) which gave r2 values of 0.991-0.998. The methylene blue fitted pseudo first order model with r2 values ranging from 0.993-0.997. Pseudo first order suggested that the adsorption mechanism for methylene blue onto adsorbents involved van der Waal forces of attraction. The equilibrium data fitted Langmuir isotherm model for CBC, ACBC-10 and ACBC-20 with r2 of 0.994 to 0.998 for the removal of methylene blue whilst the removal of Cd(II) followed Freundlich with r2 ranging from 0.992 to 0.997. This suggested that the different adsorption processes were involved between the adsorbate and the adsorbents. Gibb′s free energy (ΔGº) for Cd(II) and methylene blue onto CBC, ACBC-10 and ACBC-20 suggested that the reaction was spontaneous. The adsorption of Cd(II) and methylene blue was endothermic, positive values (ΔHº). This suggested that the enthalpy (ΔHº) had a weak interactive force process whose low energy is associated with electrostatic attraction.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A.B. Albadarin, M.N. Collins, M. Naushad, S. Shirazian, G. Walker and C. Mangwandi, Chem. Eng. J., 307, 264 (2017); https://doi.org/10.1016/j.cej.2016.08.089
- D. Pathania, S. Sharma and P. Singh, Arab. J. Chem., 10, S1445 (2017); https://doi.org/10.1016/j.arabjc.2013.04.021
- Ravi and L.M. Pandey, Appl. Clay Sci., 169, 102 (2019); https://doi.org/10.1016/j.clay.2018.12.019
- B. Lellis, C.Z. Fávaro-Polonio, J.A. Pamphile and J.C. Polonio, Biotechnol. Res. Innov., 3, 275 (2019); https://doi.org/10.1016/j.biori.2019.09.001
- R.M. Novais, G. Ascensao, D.M. Tobaldi, M.P. Seabra and J.A. Labrincha, J. Clean. Prod., 171, 783 (2018); https://doi.org/10.1016/j.jclepro.2017.10.078
- N. Kawasaki, H. Tominaga, F. Ogata and K. Kakehi, Chem. Eng. J., 157, 249 (2010); https://doi.org/10.1016/j.cej.2009.11.028
- A.A. Al-Homaidan, J.A. Alabdullatif, A.A. Al-Hazzani, A. Al-Ghanayem and A.F. Alabbad, Saudi J. Biol. Sci., 22, 795 (2015); https://doi.org/10.1016/j.sjbs.2015.06.010
- Y. Zhang, Q. He, L. Xia, Y. Li and S. Song, Biochem. Eng. J., 138, 179 (2018); https://doi.org/10.1016/j.bej.2018.07.021
- H. Sharififard, Z.H. Shahraki, E. Rezvanpanah and S.H. Rad, Bioresour. Technol., 270, 562 (2018); https://doi.org/10.1016/j.biortech.2018.09.094
- M. Basu, A.K. Guha and L. Ray, Process Saf. Environ., 106, 11 (2017); https://doi.org/10.1016/j.psep.2016.11.025
- L. Lin, X. Xu, C. Papelis, T.Y. Cath and P. Xu, Sep. Purif. Technol., 134, 37 (2014); https://doi.org/10.1016/j.seppur.2014.07.008
- B.S. Thaci and S.T. Gashi, Pol. J. Environ. Stud., 28, 337 (2018); https://doi.org/10.15244/pjoes/81268
- L.K. Wang, D.A. Vaccari, Y. Li and N.K. Shammas, eds.: L.K. Wang, Y.T. Hung and N.K. Shammas, Chemical Precipitation, In: Physicochemical Treatment Processes, Humana Press, New Jersey, vol. 3, pp. 141-198 (2004).
- F.-M. Allioux, P. Kapruwan, N. Milne, L. Kong, J. Fattaccioli, Y. Chen and L.F. Dumée, Sep. Purif. Technol., 194, 26 (2018); https://doi.org/10.1016/j.seppur.2017.10.064
- C. Zhao, R. Ge, Y. Zhen, Y. Wang, Z. Li, Y. Shi and X. Chen, Chem. Eng. J., 378, 122136 (2019); https://doi.org/10.1016/j.cej.2019.122136
- A. Aghababaei, M.C. Ncibi and M. Sillanpaa, Bioresour. Technol., 239, 28 (2017); https://doi.org/10.1016/j.biortech.2017.04.119
- A. Zubrik, M. Matik, S. Hredzak, M. Lovas, Z. Dankova, M. Kovacova and J. Briancin, J. Clean. Prod., 143, 643 (2017); https://doi.org/10.1016/j.jclepro.2016.12.061
- N.D. Shooto, P.M. Thabede and E.B. Naidoo, S. Afr. J. Chem. Eng., 30, 15 (2019); https://doi.org/10.1016/j.sajce.2019.07.002
- M.A. Poiana, E. Alexa, M.F. Munteanu, R. Gligor, D. Moigradean and C. Mateescu, Open Chem., 13, 689 (2015); https://doi.org/10.1515/chem-2015-0110
- N. Zhou, Y. Wang, D. Yao, S. Li, J. Tang, D. Shen, X. Zhu, L. Huang, M. Zhong and Z. Zhou, J. Clean. Prod., 221, 63 (2019); https://doi.org/10.1016/j.jclepro.2019.02.176
- M. Barsainya, P. Chandra and D.P. Singh, Int. J. Curr. Microbiol. Appl. Sci., 5, 274 (2016); https://doi.org/10.20546/ijcmas.2016.501.027
- X. Li, Y. Wei, J. Xu, N. Xu and Y. He, Biotechnol. Biofuels, 11, 263 (2018); https://doi.org/10.1186/s13068-018-1251-4
- T.T.S. Matos, J. Schultz, M.Y. Khan, E.F. Zanoelo, A.S. Mangrich, B.R. Araujo, S. Navickiene and L.P.C. Romao, J. Braz. Chem. Soc., 28, 1975 (2017); https://doi.org/10.21577/0103-5053.20170042
- M. Husseien, A.A. Amer, A. El-Maghraby and N. Hamedallah, J. Anal. Appl. Pyrolysis, 86, 360 (2009); https://doi.org/10.1016/j.jaap.2009.08.003
- N.D. Shooto, C.W. Dikio, D. Wankasi, L.M. Sikhwivhilu, F.M. Mtunzi and E.D. Dikio, Nanoscale Res. Lett., 11, 414 (2016); https://doi.org/10.1186/s11671-016-1631-2
- Y. Liu and H. Xu, Biochem. Eng. J., 35, 174 (2007); https://doi.org/10.1016/j.bej.2007.01.020
- B. Mudyawabikwa, H.H. Mungondori, L. Tichagwa and D.M. Katwire, Water Sci. Technol., 75, 2390 (2017); https://doi.org/10.2166/wst.2017.041
- L. Zheng, D. Peng and P. Meng, J. Clean. Prod., 201, 609 (2018); https://doi.org/10.1016/j.jclepro.2018.08.070
- Y. Bian, Z.-Y. Bian, J.-X. Zhang, A.-Z. Ding, S.-L. Liu and H. Wang, Appl. Surf. Sci., 329, 269 (2015); https://doi.org/10.1016/j.apsusc.2014.12.090
- A. Rathinam, B. Maharshi, S.K. Janardhanan, R.R. Jonnalagadda and B.U. Nair, Bioresour. Technol., 101, 1466 (2010); https://doi.org/10.1016/j.biortech.2009.08.008
- U. Garg, M.P. Kaur, G.K. Jawa, D. Sud and V.K. Garg, J. Hazard. Mater., 154, 1149 (2008); https://doi.org/10.1016/j.jhazmat.2007.11.040
- V.O. Njoku, A.A. Ayuk, E.E. Oguzie and E.N. Ejike, Sep. Sci. Technol., 47, 753 (2012); https://doi.org/10.1080/01496395.2011.626829
- L. Zheng, Z. Dang, X. Yi and H. Zhang, J. Hazard. Mater., 176, 650 (2010); https://doi.org/10.1016/j.jhazmat.2009.11.081
- K. Yakkala, M.R. Yu, H. Roh, J.K. Yang and Y.Y. Chang, Desalination Water Treat., 51, 7732 (2013); https://doi.org/10.1080/19443994.2013.792546
- W. Yin, C. Zhao, C. Xu, J. Zhang, Z. Guo and Y. Shao, Colloid Surf. A, 560, 426 (2019); https://doi.org/10.1016/j.colsurfa.2018.10.031
- A. Ebrahimi, M. Ehteshami and B. Dahrazma, Process Saf. Environ., 98, 374 (2015); https://doi.org/10.1016/j.psep.2015.09.013
- A.B. Albadarin, M.N. Collins, M. Naushad, S. Shirazian, G. Walker and C. Mangwandi, Chem. Eng. J., 307, 264 (2017); https://doi.org/10.1016/j.cej.2016.08.089
- R.M. Novais, J. Carvalheiras, D.M. Tobaldi, M.P. Seabra, R.C. Pullar and J.A. Labrincha, J. Clean. Prod., 207, 350 (2019); https://doi.org/10.1016/j.jclepro.2018.09.265
- M.A.A. Zaini, M. Zakaria, S.H. Mohd.-Setapar and M.A. Che-Yunus, J. Environ. Chem. Eng., 1, 1091 (2013); https://doi.org/10.1016/j.jece.2013.08.026
- A.M. Aljeboree, A.N. Alshirifi and A.F. Alkaim, Arab. J. Chem., 10, S3381 (2017); https://doi.org/10.1016/j.arabjc.2014.01.020
- A. Al-Futaisi, J. Jamrah and R. Al-Hanai, Desalination, 214, 327 (2007); https://doi.org/10.1016/j.desal.2006.10.024
- V. Basavarao and S. Rammohanrao, Chem. Eng. J., 116, 77 (2006); https://doi.org/10.1016/j.cej.2005.09.029
- M.S.U. Rehman, I. Kim and J.-I. Han, Carbohydr. Polym., 90, 1314 (2012); https://doi.org/10.1016/j.carbpol.2012.06.078
- F.A. Pavan, A.C. Mazzocato and Y. Gushikem, Bioresour. Technol., 99, 3162 (2008); https://doi.org/10.1016/j.biortech.2007.05.067
- S. Cengiz and L. Cavas, Bioresour. Technol., 99, 2357 (2008); https://doi.org/10.1016/j.biortech.2007.05.011
References
A.B. Albadarin, M.N. Collins, M. Naushad, S. Shirazian, G. Walker and C. Mangwandi, Chem. Eng. J., 307, 264 (2017); https://doi.org/10.1016/j.cej.2016.08.089
D. Pathania, S. Sharma and P. Singh, Arab. J. Chem., 10, S1445 (2017); https://doi.org/10.1016/j.arabjc.2013.04.021
Ravi and L.M. Pandey, Appl. Clay Sci., 169, 102 (2019); https://doi.org/10.1016/j.clay.2018.12.019
B. Lellis, C.Z. Fávaro-Polonio, J.A. Pamphile and J.C. Polonio, Biotechnol. Res. Innov., 3, 275 (2019); https://doi.org/10.1016/j.biori.2019.09.001
R.M. Novais, G. Ascensao, D.M. Tobaldi, M.P. Seabra and J.A. Labrincha, J. Clean. Prod., 171, 783 (2018); https://doi.org/10.1016/j.jclepro.2017.10.078
N. Kawasaki, H. Tominaga, F. Ogata and K. Kakehi, Chem. Eng. J., 157, 249 (2010); https://doi.org/10.1016/j.cej.2009.11.028
A.A. Al-Homaidan, J.A. Alabdullatif, A.A. Al-Hazzani, A. Al-Ghanayem and A.F. Alabbad, Saudi J. Biol. Sci., 22, 795 (2015); https://doi.org/10.1016/j.sjbs.2015.06.010
Y. Zhang, Q. He, L. Xia, Y. Li and S. Song, Biochem. Eng. J., 138, 179 (2018); https://doi.org/10.1016/j.bej.2018.07.021
H. Sharififard, Z.H. Shahraki, E. Rezvanpanah and S.H. Rad, Bioresour. Technol., 270, 562 (2018); https://doi.org/10.1016/j.biortech.2018.09.094
M. Basu, A.K. Guha and L. Ray, Process Saf. Environ., 106, 11 (2017); https://doi.org/10.1016/j.psep.2016.11.025
L. Lin, X. Xu, C. Papelis, T.Y. Cath and P. Xu, Sep. Purif. Technol., 134, 37 (2014); https://doi.org/10.1016/j.seppur.2014.07.008
B.S. Thaci and S.T. Gashi, Pol. J. Environ. Stud., 28, 337 (2018); https://doi.org/10.15244/pjoes/81268
L.K. Wang, D.A. Vaccari, Y. Li and N.K. Shammas, eds.: L.K. Wang, Y.T. Hung and N.K. Shammas, Chemical Precipitation, In: Physicochemical Treatment Processes, Humana Press, New Jersey, vol. 3, pp. 141-198 (2004).
F.-M. Allioux, P. Kapruwan, N. Milne, L. Kong, J. Fattaccioli, Y. Chen and L.F. Dumée, Sep. Purif. Technol., 194, 26 (2018); https://doi.org/10.1016/j.seppur.2017.10.064
C. Zhao, R. Ge, Y. Zhen, Y. Wang, Z. Li, Y. Shi and X. Chen, Chem. Eng. J., 378, 122136 (2019); https://doi.org/10.1016/j.cej.2019.122136
A. Aghababaei, M.C. Ncibi and M. Sillanpaa, Bioresour. Technol., 239, 28 (2017); https://doi.org/10.1016/j.biortech.2017.04.119
A. Zubrik, M. Matik, S. Hredzak, M. Lovas, Z. Dankova, M. Kovacova and J. Briancin, J. Clean. Prod., 143, 643 (2017); https://doi.org/10.1016/j.jclepro.2016.12.061
N.D. Shooto, P.M. Thabede and E.B. Naidoo, S. Afr. J. Chem. Eng., 30, 15 (2019); https://doi.org/10.1016/j.sajce.2019.07.002
M.A. Poiana, E. Alexa, M.F. Munteanu, R. Gligor, D. Moigradean and C. Mateescu, Open Chem., 13, 689 (2015); https://doi.org/10.1515/chem-2015-0110
N. Zhou, Y. Wang, D. Yao, S. Li, J. Tang, D. Shen, X. Zhu, L. Huang, M. Zhong and Z. Zhou, J. Clean. Prod., 221, 63 (2019); https://doi.org/10.1016/j.jclepro.2019.02.176
M. Barsainya, P. Chandra and D.P. Singh, Int. J. Curr. Microbiol. Appl. Sci., 5, 274 (2016); https://doi.org/10.20546/ijcmas.2016.501.027
X. Li, Y. Wei, J. Xu, N. Xu and Y. He, Biotechnol. Biofuels, 11, 263 (2018); https://doi.org/10.1186/s13068-018-1251-4
T.T.S. Matos, J. Schultz, M.Y. Khan, E.F. Zanoelo, A.S. Mangrich, B.R. Araujo, S. Navickiene and L.P.C. Romao, J. Braz. Chem. Soc., 28, 1975 (2017); https://doi.org/10.21577/0103-5053.20170042
M. Husseien, A.A. Amer, A. El-Maghraby and N. Hamedallah, J. Anal. Appl. Pyrolysis, 86, 360 (2009); https://doi.org/10.1016/j.jaap.2009.08.003
N.D. Shooto, C.W. Dikio, D. Wankasi, L.M. Sikhwivhilu, F.M. Mtunzi and E.D. Dikio, Nanoscale Res. Lett., 11, 414 (2016); https://doi.org/10.1186/s11671-016-1631-2
Y. Liu and H. Xu, Biochem. Eng. J., 35, 174 (2007); https://doi.org/10.1016/j.bej.2007.01.020
B. Mudyawabikwa, H.H. Mungondori, L. Tichagwa and D.M. Katwire, Water Sci. Technol., 75, 2390 (2017); https://doi.org/10.2166/wst.2017.041
L. Zheng, D. Peng and P. Meng, J. Clean. Prod., 201, 609 (2018); https://doi.org/10.1016/j.jclepro.2018.08.070
Y. Bian, Z.-Y. Bian, J.-X. Zhang, A.-Z. Ding, S.-L. Liu and H. Wang, Appl. Surf. Sci., 329, 269 (2015); https://doi.org/10.1016/j.apsusc.2014.12.090
A. Rathinam, B. Maharshi, S.K. Janardhanan, R.R. Jonnalagadda and B.U. Nair, Bioresour. Technol., 101, 1466 (2010); https://doi.org/10.1016/j.biortech.2009.08.008
U. Garg, M.P. Kaur, G.K. Jawa, D. Sud and V.K. Garg, J. Hazard. Mater., 154, 1149 (2008); https://doi.org/10.1016/j.jhazmat.2007.11.040
V.O. Njoku, A.A. Ayuk, E.E. Oguzie and E.N. Ejike, Sep. Sci. Technol., 47, 753 (2012); https://doi.org/10.1080/01496395.2011.626829
L. Zheng, Z. Dang, X. Yi and H. Zhang, J. Hazard. Mater., 176, 650 (2010); https://doi.org/10.1016/j.jhazmat.2009.11.081
K. Yakkala, M.R. Yu, H. Roh, J.K. Yang and Y.Y. Chang, Desalination Water Treat., 51, 7732 (2013); https://doi.org/10.1080/19443994.2013.792546
W. Yin, C. Zhao, C. Xu, J. Zhang, Z. Guo and Y. Shao, Colloid Surf. A, 560, 426 (2019); https://doi.org/10.1016/j.colsurfa.2018.10.031
A. Ebrahimi, M. Ehteshami and B. Dahrazma, Process Saf. Environ., 98, 374 (2015); https://doi.org/10.1016/j.psep.2015.09.013
A.B. Albadarin, M.N. Collins, M. Naushad, S. Shirazian, G. Walker and C. Mangwandi, Chem. Eng. J., 307, 264 (2017); https://doi.org/10.1016/j.cej.2016.08.089
R.M. Novais, J. Carvalheiras, D.M. Tobaldi, M.P. Seabra, R.C. Pullar and J.A. Labrincha, J. Clean. Prod., 207, 350 (2019); https://doi.org/10.1016/j.jclepro.2018.09.265
M.A.A. Zaini, M. Zakaria, S.H. Mohd.-Setapar and M.A. Che-Yunus, J. Environ. Chem. Eng., 1, 1091 (2013); https://doi.org/10.1016/j.jece.2013.08.026
A.M. Aljeboree, A.N. Alshirifi and A.F. Alkaim, Arab. J. Chem., 10, S3381 (2017); https://doi.org/10.1016/j.arabjc.2014.01.020
A. Al-Futaisi, J. Jamrah and R. Al-Hanai, Desalination, 214, 327 (2007); https://doi.org/10.1016/j.desal.2006.10.024
V. Basavarao and S. Rammohanrao, Chem. Eng. J., 116, 77 (2006); https://doi.org/10.1016/j.cej.2005.09.029
M.S.U. Rehman, I. Kim and J.-I. Han, Carbohydr. Polym., 90, 1314 (2012); https://doi.org/10.1016/j.carbpol.2012.06.078
F.A. Pavan, A.C. Mazzocato and Y. Gushikem, Bioresour. Technol., 99, 3162 (2008); https://doi.org/10.1016/j.biortech.2007.05.067
S. Cengiz and L. Cavas, Bioresour. Technol., 99, 2357 (2008); https://doi.org/10.1016/j.biortech.2007.05.011