Copyright (c) 2020 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Supramolecular Assembly Interceded by C-H···O Hydrogen Bonds and Nitro···π(arene) Interactions of Antibacterial 4-Methyl-(2-nitro benzylidene)aniline using DFT and its Spectral Studies
Corresponding Author(s) : V. Bena Jothy
Asian Journal of Chemistry,
Vol. 32 No. 5 (2020): Vol 32 Issue 5
Abstract
4-Methyl-(2-nitrobenzylidene)aniline (MNBA) was grown and its structural as well as spectral analyses (FT-IR, FT-Raman, UV and NMR) using experimental and DFT computations were performed to understand its biological applications. Stability of molecule, charge delocalization, charge analysis and charge transfer interactions had been explored to examine the structural analysis. Docking studies also suggested that 4-methyl-(2-nitrobenzylidene)aniline exhibit antibacterial activity. Supramolecular assembly of 4-methyl-(2-nitrobenzylidene)aniline molecule was interceded by C-H···O hydrogen bonds and nitro···π(arene) interactions.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Leela, K. Ramamurthi and G. Bhagavannarayana, Spectrochim. Acta A Mol. Biomol. Spectrosc., 74, 78 (2009); https://doi.org/10.1016/j.saa.2009.05.028
- G.W. Nuss Jr., N.J. Santora and G.H. Douglas, Sunscreen and Erythema Treating with N-benzylidene Anilenes, US Patent US4187317A (1978).
- W. Al Zoubi, S.G. Mohamed, A.A.S. Al-Hamdani, A.P. Mahendradhany and Y.G. Ko, RSC Adv., 8, 23294 (2018); https://doi.org/10.1039/C8RA01890A
- G. Gunasekaran and L.R. Chauhan, Electrochim. Acta, 49, 4387 (2004); https://doi.org/10.1016/j.electacta.2004.04.030
- G.D. Batema, M. Lutz, A.L. Spek, C.A. van Walree, G.P.M. van Klink and G. van Koten, Dalton Trans., 43, 12200 (2014); https://doi.org/10.1039/C4DT01023J
- C.A. van Walree, O. Franssen, A.W. Marsman, M.C. Flipse and L.W. Jenneskens, J. Chem. Soc., Perkin Trans. 2, 799 (1997); https://doi.org/10.1039/a604603g
- G.D. Batema, M. Lutz, A.L. Spek, C.A. van Walree, G.P.M. van Klink and G. van Koten, Dalton Trans., 43, 12200 (2014); https://doi.org/10.1039/C4DT01023J
- A. Kajal, S. Bala, S. Kamboj, N. Sharma and V. Saini, J. Catal., 2013, 893512 (2013); https://doi.org/10.1155/2013/893512
- C.M. da Silva, D.L. da Silva, L.V. Modolo, R.B. Alves, M.A. de Resende, C.V.B. Martins and Â. Fátima, J. Adv. Res., 2, 1 (2011); https://doi.org/10.1016/j.jare.2010.05.004
- S.N. Pandeya, D. Sriram, G. Nath and E. DeClercq, Eur. J. Pharma. Soc., 9, 25 (1999); https://doi.org/10.1016/S0928-0987(99)00038-X
- M.N. Ibrahim, K.J. Hamad and S.H. Al-Joroshi, Asian J. Chem., 18, 2404 (2006).
- F.D. Popp, J. Org. Chem., 26, 1566 (1961); https://doi.org/10.1021/jo01064a063
- Z. Cimerman, S. Miljanic and N. Galic, Crotica Chem. Acta, 73, 81 (2000).
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski and D.J. Fox, Gaussian Inc., Wallingford CT, Gaussian 09, Revision D.01 (2009).
- T. Sundius, J. Mol. Struct., 218, 321 (1990); https://doi.org/10.1016/0022-2860(90)80287-T
- T. Sundius, Vib. Spectrosc., 29, 89 (2002); https://doi.org/10.1016/S0924-2031(01)00189-8
- P. Pulay, Mol. Phys.: An Int. J. Interf. Between Chem. Phys., 17, 197 (1969); https://doi.org/10.1080/00268976900100941
- P. Pulay, G. Fogarasi, G. Pongor, J.E. Boggs and A. Vargha, J. Am. Chem. Soc., 105, 7037 (1983); https://doi.org/10.1021/ja00362a005
- E. Runge and E.K.U. Gross, Phys. Rev. Lett., 52, 997 (1984); https://doi.org/10.1103/PhysRevLett.52.997
- M. Petersilka, U.J. Gossmann and E.K.U. Gross, Phys. Rev. Lett., 76, 1212 (1996); https://doi.org/10.1103/PhysRevLett.76.1212
- R. Bauernschmitt and R. Ahlrichs, Chem. Phys. Lett., 256, 454 (1996); https://doi.org/10.1016/0009-2614(96)00440-X
- C. Jamorski, M.E. Casida and D.R. Salahub, J. Chem. Phys., 104, 5134 (1996); https://doi.org/10.1063/1.471140
- W. Kohn, A.D. Becke and R.G. Parr, J. Chem. Phys., 100, 12974 (1996); https://doi.org/10.1021/jp960669l
- R.G. Parr and R.G. Pearson, J. Am. Chem. Soc., 105, 7512 (1983); https://doi.org/10.1021/ja00364a005
- P. Politzer and F. Abu-Awwad, Theor. Chem. Acc., 99(I2), 83 (1998); https://doi.org/10.1007/s002140050307
- R. Ditchfield, J. Chem. Phys., 56, 5688 (1972); https://doi.org/10.1063/1.1677088
- K. Wolinski, J.F. Hinton and P. Pulay, J. Am. Chem. Soc., 112, 8251 (1990); https://doi.org/10.1021/ja00179a005
- G.M. Morris, R. Huey, W. Lindstrom, M.F. Sanner, R.K. Belew, D.S. Goodsell and A.J. Olson, J. Comput. Chem., 30, 2785 (2009); https://doi.org/10.1002/jcc.21256
- F.H. Allen, O. Kennard, D.G. Watson, L. Brammer, A.G. Orpen and R. Taylor, J. Chem. Soc., Perkin Trans. II, S1 (1987); https://doi.org/10.1039/P298700000S1
- F. Reti, I. Bertoti, G. Mink and G. Varsanyi, Solid State Ion., 44, 33 (1990); https://doi.org/10.1016/0167-2738(90)90040-X
- B.L. Smith, T.E. Schäffer, M. Viani, J.B. Thompson, N.A. Frederick, J. Kindt, A. Belcher, G.D. Stucky, D.E. Morse and P.K. Hansma, Nature, 399, 761 (1999); https://doi.org/10.1038/21607
- G. Treboux, D. Maynau and J.P. Malrieu, J. Chem. Phys., 99, 6417 (1995); https://doi.org/10.1021/j100017a021
- J. Mohan, Organic Spectroscopy Principles and Applications, Narosa Publishing House: New Delhi (2009).
- H.O. Kalinowski, S. Berger and S. Braun, Carbon-13 NMR Spectroscopy, John Wiley & Sons: Chichester (1988).
- K. Pihlaja and E. Kleinpeter, Carbon-13 Chemical Shifts in Structural and Sterochemical Analysis, VCH Publishers: Deerfield Beach (1994).
- A.A. El-Bindary, S.A. El-Korashy, J.A. Hasanen, I.M. El-Deen, M.A. Hussien and S.M. Al-Sayed, Int. J. Scient. Eng. Res., 5, 851 (2014).
References
S. Leela, K. Ramamurthi and G. Bhagavannarayana, Spectrochim. Acta A Mol. Biomol. Spectrosc., 74, 78 (2009); https://doi.org/10.1016/j.saa.2009.05.028
G.W. Nuss Jr., N.J. Santora and G.H. Douglas, Sunscreen and Erythema Treating with N-benzylidene Anilenes, US Patent US4187317A (1978).
W. Al Zoubi, S.G. Mohamed, A.A.S. Al-Hamdani, A.P. Mahendradhany and Y.G. Ko, RSC Adv., 8, 23294 (2018); https://doi.org/10.1039/C8RA01890A
G. Gunasekaran and L.R. Chauhan, Electrochim. Acta, 49, 4387 (2004); https://doi.org/10.1016/j.electacta.2004.04.030
G.D. Batema, M. Lutz, A.L. Spek, C.A. van Walree, G.P.M. van Klink and G. van Koten, Dalton Trans., 43, 12200 (2014); https://doi.org/10.1039/C4DT01023J
C.A. van Walree, O. Franssen, A.W. Marsman, M.C. Flipse and L.W. Jenneskens, J. Chem. Soc., Perkin Trans. 2, 799 (1997); https://doi.org/10.1039/a604603g
G.D. Batema, M. Lutz, A.L. Spek, C.A. van Walree, G.P.M. van Klink and G. van Koten, Dalton Trans., 43, 12200 (2014); https://doi.org/10.1039/C4DT01023J
A. Kajal, S. Bala, S. Kamboj, N. Sharma and V. Saini, J. Catal., 2013, 893512 (2013); https://doi.org/10.1155/2013/893512
C.M. da Silva, D.L. da Silva, L.V. Modolo, R.B. Alves, M.A. de Resende, C.V.B. Martins and Â. Fátima, J. Adv. Res., 2, 1 (2011); https://doi.org/10.1016/j.jare.2010.05.004
S.N. Pandeya, D. Sriram, G. Nath and E. DeClercq, Eur. J. Pharma. Soc., 9, 25 (1999); https://doi.org/10.1016/S0928-0987(99)00038-X
M.N. Ibrahim, K.J. Hamad and S.H. Al-Joroshi, Asian J. Chem., 18, 2404 (2006).
F.D. Popp, J. Org. Chem., 26, 1566 (1961); https://doi.org/10.1021/jo01064a063
Z. Cimerman, S. Miljanic and N. Galic, Crotica Chem. Acta, 73, 81 (2000).
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski and D.J. Fox, Gaussian Inc., Wallingford CT, Gaussian 09, Revision D.01 (2009).
T. Sundius, J. Mol. Struct., 218, 321 (1990); https://doi.org/10.1016/0022-2860(90)80287-T
T. Sundius, Vib. Spectrosc., 29, 89 (2002); https://doi.org/10.1016/S0924-2031(01)00189-8
P. Pulay, Mol. Phys.: An Int. J. Interf. Between Chem. Phys., 17, 197 (1969); https://doi.org/10.1080/00268976900100941
P. Pulay, G. Fogarasi, G. Pongor, J.E. Boggs and A. Vargha, J. Am. Chem. Soc., 105, 7037 (1983); https://doi.org/10.1021/ja00362a005
E. Runge and E.K.U. Gross, Phys. Rev. Lett., 52, 997 (1984); https://doi.org/10.1103/PhysRevLett.52.997
M. Petersilka, U.J. Gossmann and E.K.U. Gross, Phys. Rev. Lett., 76, 1212 (1996); https://doi.org/10.1103/PhysRevLett.76.1212
R. Bauernschmitt and R. Ahlrichs, Chem. Phys. Lett., 256, 454 (1996); https://doi.org/10.1016/0009-2614(96)00440-X
C. Jamorski, M.E. Casida and D.R. Salahub, J. Chem. Phys., 104, 5134 (1996); https://doi.org/10.1063/1.471140
W. Kohn, A.D. Becke and R.G. Parr, J. Chem. Phys., 100, 12974 (1996); https://doi.org/10.1021/jp960669l
R.G. Parr and R.G. Pearson, J. Am. Chem. Soc., 105, 7512 (1983); https://doi.org/10.1021/ja00364a005
P. Politzer and F. Abu-Awwad, Theor. Chem. Acc., 99(I2), 83 (1998); https://doi.org/10.1007/s002140050307
R. Ditchfield, J. Chem. Phys., 56, 5688 (1972); https://doi.org/10.1063/1.1677088
K. Wolinski, J.F. Hinton and P. Pulay, J. Am. Chem. Soc., 112, 8251 (1990); https://doi.org/10.1021/ja00179a005
G.M. Morris, R. Huey, W. Lindstrom, M.F. Sanner, R.K. Belew, D.S. Goodsell and A.J. Olson, J. Comput. Chem., 30, 2785 (2009); https://doi.org/10.1002/jcc.21256
F.H. Allen, O. Kennard, D.G. Watson, L. Brammer, A.G. Orpen and R. Taylor, J. Chem. Soc., Perkin Trans. II, S1 (1987); https://doi.org/10.1039/P298700000S1
F. Reti, I. Bertoti, G. Mink and G. Varsanyi, Solid State Ion., 44, 33 (1990); https://doi.org/10.1016/0167-2738(90)90040-X
B.L. Smith, T.E. Schäffer, M. Viani, J.B. Thompson, N.A. Frederick, J. Kindt, A. Belcher, G.D. Stucky, D.E. Morse and P.K. Hansma, Nature, 399, 761 (1999); https://doi.org/10.1038/21607
G. Treboux, D. Maynau and J.P. Malrieu, J. Chem. Phys., 99, 6417 (1995); https://doi.org/10.1021/j100017a021
J. Mohan, Organic Spectroscopy Principles and Applications, Narosa Publishing House: New Delhi (2009).
H.O. Kalinowski, S. Berger and S. Braun, Carbon-13 NMR Spectroscopy, John Wiley & Sons: Chichester (1988).
K. Pihlaja and E. Kleinpeter, Carbon-13 Chemical Shifts in Structural and Sterochemical Analysis, VCH Publishers: Deerfield Beach (1994).
A.A. El-Bindary, S.A. El-Korashy, J.A. Hasanen, I.M. El-Deen, M.A. Hussien and S.M. Al-Sayed, Int. J. Scient. Eng. Res., 5, 851 (2014).