Copyright (c) 2020 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Physico-Chemical Properties of Nickel Promoted Sulfated Zirconia Powder Prepared using Different Procedures
Corresponding Author(s) : Karna Wijaya
Asian Journal of Chemistry,
Vol. 32 No. 3 (2020): Vol 32 Issue 3
Abstract
In this work, nickel promoted sulfated zirconia (Ni/SZ) as catalyst was prepared by either by reflux (Ni/SZ-R) or hydrothermal Ni impregnation (Ni/SZ-H) routes. The aim of this study was to evaluate the influences of two preparative methods on the physico-chemical properties of prepared catalysts. Both the catalysts were characterized by XRD, FTIR, ammonia adsorption, SEM-EDX, TEM-SAED, AAS and BET. It was found that the presence of sulfate and nickel could enhance the Brønsted and Lewis active acid sites. In relation to the effect of Ni impregnation method, acidity, amount of sulfate and Ni found in Ni/SZ-R were higher than those in Ni/SZ-H. Unfortunately, higher impregnated sulfate and nickel on zirconia support led to a decrease in surface area and pore volume and an increase in crystallite size of grainy aggregated mesoporous nickel promoted sulfated zirconia (Ni/SZ).
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- G.D. Yadav and J.J. Nair, Micropor. Mesopor. Mater., 33, 1 (1999); https://doi.org/10.1016/S1387-1811(99)00147-X
- K. Wijaya, Indones. J. Chem., 2, 142 (2002); https://doi.org/10.22146/ijc.21909
- J.M. Escola, J. Aguado, D.P. Serano, L. Briones, J.L. Díaz de Tuesta, R. Calvo and E. Fernandez, Energy Fuels, 26, 3187 (2012); https://doi.org/10.1021/ef300938r
- N. Insura, J.A. Onwudili and P.T. Williams, Energy Fuels, 24, 4231 (2010); https://doi.org/10.1021/ef100227f
- W. Ding, J. Liang and L.L. Anderson, Energy Fuels, 11, 1219 (1997); https://doi.org/10.1021/ef970051q
- S.X. Song, M. Pilko and R.A. Kydd, Catal. Lett., 55, 97 (1998); https://doi.org/10.1023/A:1019022610103
- P. Jing, Q. Li, M. Han, D. Sun, L. Jia and W. Wang, Front. Chem. Eng. China, 2, 186 (2008); https://doi.org/10.1007/s11705-008-0035-y
- A.K. Amin, K. Wijaya and W. Trisunaryanti, Orient. J. Chem., 34, 3070 (2018); https://doi.org/10.13005/ojc/340650
- Y. Song, J. Tian, Y. Ye, Y, Jin, X. Zhou, J. Wang and L. Xu, Catal. Today, 212, 108 (2013); https://doi.org/10.1016/j.cattod.2012.07.024
- M. Utami, K. Wijaya and W. Trisunaryanti, Mater. Chem. Phys., 213, 548 (2018); https://doi.org/10.1016/j.matchemphys.2018.03.055
- J. Aguado, D.P. Serano, J.M. Escola and A. Patel, Anal. Appl. Pyrol., 85, 352 (2009); https://doi.org/10.1016/j.jaap.2008.10.009
- F.J. Passamonti and U. Sedran, Appl. Catal. B, Environ., 125, 499 (2012); https://doi.org/10.1016/j.apcatb.2012.06.020
- M. Pérez, H. Armendáriz, J.A. Toledo, A. Vázquez, J. Navarrette, A. Montoya and A. Gárcia, J. Mol. Catal. A: Chem., 149, 169 (1999); https://doi.org/10.1016/S1381-1169(99)00172-7
- Y. Kuwahara, W. Kaburagi, K. Nemoto and T. Fujitami, Appl. Catal. A, Gen., 476, 186 (2014); https://doi.org/10.1016/j.apcata.2014.02.032
- A.K. Shah, M. Kumar, S.H.R. Abdi, R.I. Kureshy, N.H. Khan and H.C. Bajaj, Appl. Catal. A, Gen., 486, 105 (2014); https://doi.org/10.1016/j.apcata.2014.08.024
- T. Barzetti, E. Selli, D. Moscotti and L. Forni, J. Chem. Soc., Faraday Trans., 92, 1409 (1996); https://doi.org/10.1039/ft9969201401
- M. Ejtemaei, A. Tavakoli, N. Charchi, B. Bayati, A.A. Babaluo and Y. Bayat, Adv. Powder Technol., 25, 840 (2014); https://doi.org/10.1016/j.apt.2013.12.009
- J.R. Sohn, J.G. Kim, T.D. Kwon and E.H. Park, Langmuir, 18, 1666 (2002); https://doi.org/10.1021/la011304h
- E. Djurado, P. Bouvier and G. Lucazeau, J. Solid State Chem., 149, 399 (2000); https://doi.org/10.1006/jssc.1999.8565
- S.K. Das and S.A. El-Safty, Chem. Cat. Chem., 5, 3050 (2013); https://doi.org/10.1002/cctc.201300192
- K.S. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquérol and T. Siemieniewska, Pure Appl. Chem., 57, 603 (1985); https://doi.org/10.1351/pac198557040603
- M. Thommes, K. Kaneko, A.V. Neimark, J.P. Oliver, F. RodriguezReinoso, J. Rouquérol and K.S.W. Sing, Pure ppl. Chem., 87, 1051 (2015); https://doi.org/10.1515/pac-2014-1117
- A. Suseno, K. Wijaya, W. Trisunaryanti and Roto, Orient. J. Chem., 34, 1427 (2018); https://doi.org/10.13005/ojc/340332
References
G.D. Yadav and J.J. Nair, Micropor. Mesopor. Mater., 33, 1 (1999); https://doi.org/10.1016/S1387-1811(99)00147-X
K. Wijaya, Indones. J. Chem., 2, 142 (2002); https://doi.org/10.22146/ijc.21909
J.M. Escola, J. Aguado, D.P. Serano, L. Briones, J.L. Díaz de Tuesta, R. Calvo and E. Fernandez, Energy Fuels, 26, 3187 (2012); https://doi.org/10.1021/ef300938r
N. Insura, J.A. Onwudili and P.T. Williams, Energy Fuels, 24, 4231 (2010); https://doi.org/10.1021/ef100227f
W. Ding, J. Liang and L.L. Anderson, Energy Fuels, 11, 1219 (1997); https://doi.org/10.1021/ef970051q
S.X. Song, M. Pilko and R.A. Kydd, Catal. Lett., 55, 97 (1998); https://doi.org/10.1023/A:1019022610103
P. Jing, Q. Li, M. Han, D. Sun, L. Jia and W. Wang, Front. Chem. Eng. China, 2, 186 (2008); https://doi.org/10.1007/s11705-008-0035-y
A.K. Amin, K. Wijaya and W. Trisunaryanti, Orient. J. Chem., 34, 3070 (2018); https://doi.org/10.13005/ojc/340650
Y. Song, J. Tian, Y. Ye, Y, Jin, X. Zhou, J. Wang and L. Xu, Catal. Today, 212, 108 (2013); https://doi.org/10.1016/j.cattod.2012.07.024
M. Utami, K. Wijaya and W. Trisunaryanti, Mater. Chem. Phys., 213, 548 (2018); https://doi.org/10.1016/j.matchemphys.2018.03.055
J. Aguado, D.P. Serano, J.M. Escola and A. Patel, Anal. Appl. Pyrol., 85, 352 (2009); https://doi.org/10.1016/j.jaap.2008.10.009
F.J. Passamonti and U. Sedran, Appl. Catal. B, Environ., 125, 499 (2012); https://doi.org/10.1016/j.apcatb.2012.06.020
M. Pérez, H. Armendáriz, J.A. Toledo, A. Vázquez, J. Navarrette, A. Montoya and A. Gárcia, J. Mol. Catal. A: Chem., 149, 169 (1999); https://doi.org/10.1016/S1381-1169(99)00172-7
Y. Kuwahara, W. Kaburagi, K. Nemoto and T. Fujitami, Appl. Catal. A, Gen., 476, 186 (2014); https://doi.org/10.1016/j.apcata.2014.02.032
A.K. Shah, M. Kumar, S.H.R. Abdi, R.I. Kureshy, N.H. Khan and H.C. Bajaj, Appl. Catal. A, Gen., 486, 105 (2014); https://doi.org/10.1016/j.apcata.2014.08.024
T. Barzetti, E. Selli, D. Moscotti and L. Forni, J. Chem. Soc., Faraday Trans., 92, 1409 (1996); https://doi.org/10.1039/ft9969201401
M. Ejtemaei, A. Tavakoli, N. Charchi, B. Bayati, A.A. Babaluo and Y. Bayat, Adv. Powder Technol., 25, 840 (2014); https://doi.org/10.1016/j.apt.2013.12.009
J.R. Sohn, J.G. Kim, T.D. Kwon and E.H. Park, Langmuir, 18, 1666 (2002); https://doi.org/10.1021/la011304h
E. Djurado, P. Bouvier and G. Lucazeau, J. Solid State Chem., 149, 399 (2000); https://doi.org/10.1006/jssc.1999.8565
S.K. Das and S.A. El-Safty, Chem. Cat. Chem., 5, 3050 (2013); https://doi.org/10.1002/cctc.201300192
K.S. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquérol and T. Siemieniewska, Pure Appl. Chem., 57, 603 (1985); https://doi.org/10.1351/pac198557040603
M. Thommes, K. Kaneko, A.V. Neimark, J.P. Oliver, F. RodriguezReinoso, J. Rouquérol and K.S.W. Sing, Pure ppl. Chem., 87, 1051 (2015); https://doi.org/10.1515/pac-2014-1117
A. Suseno, K. Wijaya, W. Trisunaryanti and Roto, Orient. J. Chem., 34, 1427 (2018); https://doi.org/10.13005/ojc/340332