Copyright (c) 2020 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Degradation Kinetics of 2,4,6-Trinitrophenol from Water Using Atmospheric Air Cold Plasma
Corresponding Author(s) : Nguyen Van Hoang
Asian Journal of Chemistry,
Vol. 32 No. 5 (2020): Vol 32 Issue 5
Abstract
The degradation studies of picric acid (2,4,6-trinitrophenol, TNP) in water sample through a dielectric barrier discharge (DBD) of atmospheric air cold plasma was carried out. The used DBD reactor consisted of comprised two electrodes that were separated by using an insulating dielectric barrier having a electric discharge voltage varying from of 7.0 to 22.0 kV. The effects of the initial concentration of TNP on the initial degradation rate was investigated methodically. The initial degradation rate was determined experimentally by changing the initial concentrations of TNP between 91.02 and 210.17 mg/L using the DBD of cold air plasma. From experimental results, a kinetic equation for TNP degradation was established based on varying initial concentration as –R = 0.0252CTNP/(1+0.0076CTNP). When 0.0076CTNP << 1, the kinetics of TNP degradation complied with the pseudo-first-order reaction. For TNP degradation kinetics, such as ln (Ct/C0) = 0.0269t + 0.1605, ln (Ct/C0) = 0.0197t + 0.0792, and ln (Ct/C0) = 0.014t + 0.0623, the initial concentrations of TNP were 91.02, 153.3 and 210.17 mg/L, respectively. Moreover, the effect of initial concentration of TNP and the electric power on the degradation efficiency of TNP were determined.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- T. Yamamoto and M. Okubo, eds.: L.K. Wang, Y.-T. Hung and N.K. Shammas, Nonthermal Plasma Technology, In: Handbook of Environmental Engineering, Advanced Physicochemical Treatment Technologies, Humana Press: New York, vol. 5, pp. 135-293 (2007).
- H. Conrads and M. Schmidt, Plasma Sources Sci. Technol., 9, 441 (2000); https://doi.org/10.1088/0963-0252/9/4/301
- Y. Raizer, Gas Discharge Physics, Springer-Verlag, Berlin: pp 449 (1987).
- B. Eliasson, M. Hirth and U. Kogelschatz, J. Phys. D Appl. Phys., 20, 1421 (1987); https://doi.org/10.1088/0022-3727/20/11/010
- H.-E. Wagner, R. Brandenburg, K.V. Kozlov, A. Sonnenfeld, P. Michel and J.F. Behnke, Vacuum, 71, 417 (2003); https://doi.org/10.1016/S0042-207X(02)00765-0
- U. Kogelschatz, Plasma Chem. Plasma Process., 23, 1 (2003); https://doi.org/10.1023/A:1022470901385
- M. López, T. Calvo, M. Prieto, R. Múgica-Vidal, I. Muro-Fraguas, F. Alba-Elías and A. Alvarez-Ordóñez, Front. Microbiol., 10, 622 (2019); https://doi.org/10.3389/fmicb.2019.00622
- Y.-M. Zhao, M. de Alba, D.-W. Sun and B. Tiwari, J. Critical Rev. Food Sci. Nutr., 59, 728 (2019); https://doi.org/10.1080/10408398.2018.1495613
- C. Hoffmann, C. Berganza and J. Zhang, Med. Gas Res., 3, 21 (2013); https://doi.org/10.1186/2045-9912-3-21
- Z. Chen, X. Cheng, L. Lin and M. Keidar, J. Phys. D: Appl. Phys., 50, 015208 (2017); https://doi.org/10.1088/1361-6463/50/1/015208
- C.M. Peres amd S.N. Agathos, Biotechnol. Ann. Rev., 6, 197 (2000); https://doi.org/10.1016/S1387-2656(00)06023-3
- F.D. Marvin-Sikkema and J.A.M. de Bont, Appl. Microbiol. Biotechnol., 42, 499 (1994); https://doi.org/10.1007/BF00173912
- M.-W. Chang, T.-S. Chen and J.-M. Chern, Ind. Eng. Chem. Res., 47, 8533 (2008); https://doi.org/10.1021/ie8003013
- J.L. Wang and L.J. Xu, J. Crit. Rev. Environ. Sci. Technol., 42, 251 (2012); https://doi.org/10.1080/10643389.2010.507698
- J. Bergendahl and J. O’Shaughnessy, J. New England Water Environ. Assoc., 38, 1979 (2004).
- P.M.K. Reddy and C. Subrahmanyam, Ind. Eng. Chem. Res., 51, 11097 (2012); https://doi.org/10.1021/ie301122p
- E. Marotta, M. Schiorlin, X. Ren, M. Rea and P. Paradisi, Plasma Process. Polym., 8, 867 (2011); https://doi.org/10.1002/ppap.201100036
- M. Magureanu, D. Piroi, N.B. Mandache and V. Parvulescu, J. Appl. Phys., 104, 103306 (2008); https://doi.org/10.1063/1.3021452
- H.-H. Cheng, S.-S. Chen, Y.-C. Wu and D.-L. Ho, J. Environ. Eng. Manage., 17, 427 (2007).
- N. Van Hoang, N.C. Tuan and D.K. Chi, Int. J. Develop. Res., 8, 23260 (2018).
- A. Fridman, Plasma Chemistry, Cambridge University Press: New York (2008).
- E.S. Massima Mouele, O.O. Fatoba, O. Babajide, K.O. Badmus and L.F. Petrik, Environ. Sci. Pollut. Res. Int., 25, 9265 (2018); https://doi.org/10.1007/s11356-018-1392-9
- P.J. Bruggeman, M.J. Kushner, B.R. Locke, J.G.E. Gardeniers, W.G. Graham, D.B. Graves, R.C.H.M. Hofman-Caris, D. Maric, J.P. Reid, E. Ceriani, D. Fernandez Rivas, J.E. Foster, S.C. Garrick, Y. Gorbanev, S. Hamaguchi, F. Iza, H. Jablonowski, E. Klimova, J. Kolb, F. Krcma, P. Lukes, Z. Machala, I. Marinov, D. Mariotti, S. Mededovic Thagard, D. Minakata, E.C. Neyts, J. Pawlat, Z.L. Petrovic, R. Pflieger, S. Reuter, D.C. Schram, S. Schröter, M. Shiraiwa, B. Tarabová, P.A. Tsai, J.R.R. Verlet, T. von Woedtke, K.R. Wilson, K. Yasui and G. Zvereva, Plasma Sources Sci. Technol., 25, 053002 (2016); https://doi.org/10.1088/0963-0252/25/5/053002
- C. Cathey, J. Cain, H. Wang, M.A. Gundersen, C. Carter and M. Ryan, Combust. Flame, 154, 715 (2008); https://doi.org/10.1016/j.combustflame.2008.03.025
- I. Hamouda, J. Guillem-Marti, M.P. Ginebra and C. Canal-Barnilis, Biomecánica, 25, 1(8) (2017); https://doi.org/10.5821/sibb.25.1.5384
- H. Mahvi, E. Bazrafshan, Gh.R. Jahed, Pak. J. Biol. Sci., 8, 892 (2005); https://doi.org/10.3923/pjbs.2005.892.894
- M. Restiwijaya, A.R. Hendrini, B. Dayana, E. Yulianto, A.W. Kinandana, F. Arianto, E. Sasmita, M. Azam and M. Nur, J. Phys. Conf. Ser., 1170, 012020 (2019); https://doi.org/10.1088/1742-6596/1170/1/012020
- V.E. Malanichev, M.V. Malashin, S.I. Moshkunov and V.Yu. Khomich, High Energy Chem., 50, 304 (2016); https://doi.org/10.1134/S0018143916040111
References
T. Yamamoto and M. Okubo, eds.: L.K. Wang, Y.-T. Hung and N.K. Shammas, Nonthermal Plasma Technology, In: Handbook of Environmental Engineering, Advanced Physicochemical Treatment Technologies, Humana Press: New York, vol. 5, pp. 135-293 (2007).
H. Conrads and M. Schmidt, Plasma Sources Sci. Technol., 9, 441 (2000); https://doi.org/10.1088/0963-0252/9/4/301
Y. Raizer, Gas Discharge Physics, Springer-Verlag, Berlin: pp 449 (1987).
B. Eliasson, M. Hirth and U. Kogelschatz, J. Phys. D Appl. Phys., 20, 1421 (1987); https://doi.org/10.1088/0022-3727/20/11/010
H.-E. Wagner, R. Brandenburg, K.V. Kozlov, A. Sonnenfeld, P. Michel and J.F. Behnke, Vacuum, 71, 417 (2003); https://doi.org/10.1016/S0042-207X(02)00765-0
U. Kogelschatz, Plasma Chem. Plasma Process., 23, 1 (2003); https://doi.org/10.1023/A:1022470901385
M. López, T. Calvo, M. Prieto, R. Múgica-Vidal, I. Muro-Fraguas, F. Alba-Elías and A. Alvarez-Ordóñez, Front. Microbiol., 10, 622 (2019); https://doi.org/10.3389/fmicb.2019.00622
Y.-M. Zhao, M. de Alba, D.-W. Sun and B. Tiwari, J. Critical Rev. Food Sci. Nutr., 59, 728 (2019); https://doi.org/10.1080/10408398.2018.1495613
C. Hoffmann, C. Berganza and J. Zhang, Med. Gas Res., 3, 21 (2013); https://doi.org/10.1186/2045-9912-3-21
Z. Chen, X. Cheng, L. Lin and M. Keidar, J. Phys. D: Appl. Phys., 50, 015208 (2017); https://doi.org/10.1088/1361-6463/50/1/015208
C.M. Peres amd S.N. Agathos, Biotechnol. Ann. Rev., 6, 197 (2000); https://doi.org/10.1016/S1387-2656(00)06023-3
F.D. Marvin-Sikkema and J.A.M. de Bont, Appl. Microbiol. Biotechnol., 42, 499 (1994); https://doi.org/10.1007/BF00173912
M.-W. Chang, T.-S. Chen and J.-M. Chern, Ind. Eng. Chem. Res., 47, 8533 (2008); https://doi.org/10.1021/ie8003013
J.L. Wang and L.J. Xu, J. Crit. Rev. Environ. Sci. Technol., 42, 251 (2012); https://doi.org/10.1080/10643389.2010.507698
J. Bergendahl and J. O’Shaughnessy, J. New England Water Environ. Assoc., 38, 1979 (2004).
P.M.K. Reddy and C. Subrahmanyam, Ind. Eng. Chem. Res., 51, 11097 (2012); https://doi.org/10.1021/ie301122p
E. Marotta, M. Schiorlin, X. Ren, M. Rea and P. Paradisi, Plasma Process. Polym., 8, 867 (2011); https://doi.org/10.1002/ppap.201100036
M. Magureanu, D. Piroi, N.B. Mandache and V. Parvulescu, J. Appl. Phys., 104, 103306 (2008); https://doi.org/10.1063/1.3021452
H.-H. Cheng, S.-S. Chen, Y.-C. Wu and D.-L. Ho, J. Environ. Eng. Manage., 17, 427 (2007).
N. Van Hoang, N.C. Tuan and D.K. Chi, Int. J. Develop. Res., 8, 23260 (2018).
A. Fridman, Plasma Chemistry, Cambridge University Press: New York (2008).
E.S. Massima Mouele, O.O. Fatoba, O. Babajide, K.O. Badmus and L.F. Petrik, Environ. Sci. Pollut. Res. Int., 25, 9265 (2018); https://doi.org/10.1007/s11356-018-1392-9
P.J. Bruggeman, M.J. Kushner, B.R. Locke, J.G.E. Gardeniers, W.G. Graham, D.B. Graves, R.C.H.M. Hofman-Caris, D. Maric, J.P. Reid, E. Ceriani, D. Fernandez Rivas, J.E. Foster, S.C. Garrick, Y. Gorbanev, S. Hamaguchi, F. Iza, H. Jablonowski, E. Klimova, J. Kolb, F. Krcma, P. Lukes, Z. Machala, I. Marinov, D. Mariotti, S. Mededovic Thagard, D. Minakata, E.C. Neyts, J. Pawlat, Z.L. Petrovic, R. Pflieger, S. Reuter, D.C. Schram, S. Schröter, M. Shiraiwa, B. Tarabová, P.A. Tsai, J.R.R. Verlet, T. von Woedtke, K.R. Wilson, K. Yasui and G. Zvereva, Plasma Sources Sci. Technol., 25, 053002 (2016); https://doi.org/10.1088/0963-0252/25/5/053002
C. Cathey, J. Cain, H. Wang, M.A. Gundersen, C. Carter and M. Ryan, Combust. Flame, 154, 715 (2008); https://doi.org/10.1016/j.combustflame.2008.03.025
I. Hamouda, J. Guillem-Marti, M.P. Ginebra and C. Canal-Barnilis, Biomecánica, 25, 1(8) (2017); https://doi.org/10.5821/sibb.25.1.5384
H. Mahvi, E. Bazrafshan, Gh.R. Jahed, Pak. J. Biol. Sci., 8, 892 (2005); https://doi.org/10.3923/pjbs.2005.892.894
M. Restiwijaya, A.R. Hendrini, B. Dayana, E. Yulianto, A.W. Kinandana, F. Arianto, E. Sasmita, M. Azam and M. Nur, J. Phys. Conf. Ser., 1170, 012020 (2019); https://doi.org/10.1088/1742-6596/1170/1/012020
V.E. Malanichev, M.V. Malashin, S.I. Moshkunov and V.Yu. Khomich, High Energy Chem., 50, 304 (2016); https://doi.org/10.1134/S0018143916040111