Copyright (c) 2020 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Binding of Methyl Viologen and its Radical to p-Sulfonatocalix[4]arene
Corresponding Author(s) : Muktar Shaikh
Asian Journal of Chemistry,
Vol. 32 No. 6 (2020): Vol 32 Issue 6
Abstract
Binding of N,N′-dimethyl-4,4′-bipyridinium (methyl viologen, MV2+) and its radical (MV+•) to novel p-sulfonatocalix[n]arene (CX[4]-S,) host has been investigated using the density functional theory (DFT). The hydrogen bonded interactions between α-, β- and -CH3 protons of methyl viologen with SO3− groups of CX[4]-S render stability to their complexes. In the lowest energy structures, one of the methyl groups of MV2+ was partially penetrated within the cavity of CX[4]-S host owing to C-H···O interactions with upper rim of host while the remaining methyl group excluded from the cavity. The radical MV+• revealed qualitatively similar binding patterns to CX[4]-S host as that of MV2+. Moreover, interaction energy of methyl viologen dication was predicted to be larger than that of the corresponding radical cation.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C.D. Gutsche, Monographs in Supramolecular Chemistry: Calixarenes; The Royal Society of Chemistry: Cambridge, U.K., vol. 1. (1989).
- C.D. Gutsche and I. Alam, Tetrahedron, 44, 4689 (1988); https://doi.org/10.1016/S0040-4020(01)86171-8
- C.D. Gutsche, ed.: E. Weber, Host Guest Complex Chemistry Macrocycles: Synthesis, Structures and applications, Springer: Berlin (1985).
- C.D. Gutsche, Calixarenes Revisited, Monographs in Supramolecular Chemistry, The Royal Society of Chemistry: Cambridge, UK (1998).
- N. Douteau-Guével, A.W. Coleman, J.P. Morel and N. Morel-Desrosiers, J. Phys. Org. Chem., 11, 693 (1998); https://doi.org/10.1002/(SICI)1099-1395(1998100)11:10<693::AIDPOC18>3.0.CO;2-8
- O.I. Kalchenko, F. Perret, N. Morel-Desrosiers and A.W.A. Coleman, J. Chem. Soc. Perkin. Trans. II, 258 (2001); https://doi.org/10.1039/b005497f
- A. Dondoni and A. Marra, Chem. Rev., 110, 4949 (2010); https://doi.org/10.1021/cr100027b
- J. Vicens and V. Bohmer, Calixarenes: A Versatile Class of Macrocyclic Compounds. Kluwer Academic Publishers: Dordrecht, Boston (1991).
- S. Ikeda and S. Shinkai, Chem. Rev., 97, 1713 (1997); https://doi.org/10.1021/cr960385x
- V. Böhmer, Angew. Chem. Int. Ed. Engl., 34, 713 (1995); https://doi.org/10.1002/anie.199507131
- A. Suwattanamala, A.L. Magalhães and J.A.N.F. Gomes, J. Mol. Struct. THEOCHEM, 729, 83 (2005); https://doi.org/10.1016/j.theochem.2005.03.060
- N. Iki, F. Narumi, T. Fujimoto, N. Morohashi and S. Miyano, J. Chem. Soc. Perkin Trans. II, 2745 (1998); https://doi.org/10.1039/a803734e
- S. Seiji, A. Koji, T. Takayuki, A. Takashi and M. Osamu, J. Chem. Soc. Perkin Trans. II, 2297 (1987).
- H. Bakirci, A.L. Koner and W.M. Nau, J. Org. Chem., 70, 9960 (2005); https://doi.org/10.1021/jo051689z
- S. Shinkai, K. Araki, T. Matsuda, N. Nishiyama, H. Ikeda, I. Takasu and M. Iwamoto, J. Am. Chem. Soc., 112, 9053 (1990); https://doi.org/10.1021/ja00181a004
- G. Arena, A. Casnati, A. Contino, F.G. Gulino, D. Sciotto and R. Ungaro, J. Chem. Soc., Perkin Trans. II, 419 (2000); https://doi.org/10.1039/a909847j
- K. Wang, D.S. Guo, H.Q. Zhang, D. Li, X.L. Zheng and Y. Liu, J. Med. Chem., 52, 6402 (2009); https://doi.org/10.1021/jm900811z
- H. Weidel and M. Russo, Monatsh. Chem., 3, 850 (1882); https://doi.org/10.1007/BF01516855
- E.L. Clennan, Coord. Chem. Rev., 248, 477 (2004); https://doi.org/10.1016/j.ccr.2004.01.001
- C.L. Bird and A.T. Kuhn, Chem. Soc. Rev., 10, 49 (1981); https://doi.org/10.1039/cs9811000049
- L.A. Summers, The Bipyridinium Herbicides, Academic Press: New York (1980).
- D. Meisel, W.A. Mulac and M.S. Matheson, J. Phys. Chem., 85, 179 (1981); https://doi.org/10.1021/j150602a015
- P.M.S. Monk, The Viologens. Physicochemical Properties, Synthesis and Applications of the Salts of 4,4′-Bipyridine, John Wiley & Sons: Chichester, U.K. (1998).
- J.M. Lu, S.V. Rosokha and J.K. Kochi, J. Am. Chem. Soc., 125, 12161 (2003); https://doi.org/10.1021/ja0364928
- W. Ong and A.E. Kaifer, J. Org. Chem., 69, 1383 (2004); https://doi.org/10.1021/jo035030+
- K. Wang, S.-Y. Xing, X.-G. Wang and H.-X. Dou, Org. Biomol. Chem., 13, 5432 (2015); https://doi.org/10.1039/C5OB00053J
- D.S. Guo, L.H. Wang and Y. Liu, J. Org. Chem., 72, 7775 (2007); https://doi.org/10.1021/jo701304g
- P. Politzer, Chemical Applications of Atomic and Molecular Electrostatic Potentials, Plenum: NewYork (1981).
- G. Naray-Szabo and G.G. Ferenczy, Chem. Rev., 95, 829 (1995); https://doi.org/10.1021/cr00036a002
- S.R. Gadre, S.A. Kulkarni and I.H. Shrivastava, J. Chem. Phys., 96, 5253 (1992); https://doi.org/10.1063/1.462710
- S.R. Gadre and R.N. Shirsat, Electrostatics of Atoms and Molecules. Universities Press: Hyderabad, India (2000).
- A.D. Becke, J. Chem. Phys., 98, 5648 (1993); https://doi.org/10.1063/1.464913
- C. Lee, W. Yang and R.G. Parr, Phys. Rev. B Condens. Matter, 37, 785 (1988); https://doi.org/10.1103/PhysRevB.37.785
- Y. Zhao and D.G. Truhlar, Theor. Chem. Acc., 120, 215 (2008); https://doi.org/10.1007/s00214-007-0310-x
- M.J. Frisch et al., Gaussian 09, Gaussian Inc.: Wallingford (2009).
- P. Balanarayan and S.R. Gadre, J. Chem. Phys., 119, 5037 (2003); https://doi.org/10.1063/1.1597652
- A.C. Limaye and S.R. Gadre, Curr. Sci., 80, 1296 (2001).
- R.F.W. Bader, Atoms in Molecules: A Quantum Theory, Oxford University Press: Oxford, U.K. (1990).
- D.F. Matta and R.J. Boyd, The Quantum Theory of Atoms in Molecules, An Introduction to the Quantum Theory of Atoms in Molecules, WileyVCH: Weinheim, pp. 1-34 (2007).
- K. Wolinski, J.F. Hinton and P. Pulay, J. Am. Chem. Soc., 112, 8251 (1990); https://doi.org/10.1021/ja00179a005
- S. Miertuš, E. Scrocco and J. Tomasi, Chem. Phys., 55, 117 (1981); https://doi.org/10.1016/0301-0104(81)85090-2
- A. Bagno, F. Rastrelli and G. Saielli, J. Org. Chem., 72, 7373 (2007); https://doi.org/10.1021/jo071129v
References
C.D. Gutsche, Monographs in Supramolecular Chemistry: Calixarenes; The Royal Society of Chemistry: Cambridge, U.K., vol. 1. (1989).
C.D. Gutsche and I. Alam, Tetrahedron, 44, 4689 (1988); https://doi.org/10.1016/S0040-4020(01)86171-8
C.D. Gutsche, ed.: E. Weber, Host Guest Complex Chemistry Macrocycles: Synthesis, Structures and applications, Springer: Berlin (1985).
C.D. Gutsche, Calixarenes Revisited, Monographs in Supramolecular Chemistry, The Royal Society of Chemistry: Cambridge, UK (1998).
N. Douteau-Guével, A.W. Coleman, J.P. Morel and N. Morel-Desrosiers, J. Phys. Org. Chem., 11, 693 (1998); https://doi.org/10.1002/(SICI)1099-1395(1998100)11:10<693::AIDPOC18>3.0.CO;2-8
O.I. Kalchenko, F. Perret, N. Morel-Desrosiers and A.W.A. Coleman, J. Chem. Soc. Perkin. Trans. II, 258 (2001); https://doi.org/10.1039/b005497f
A. Dondoni and A. Marra, Chem. Rev., 110, 4949 (2010); https://doi.org/10.1021/cr100027b
J. Vicens and V. Bohmer, Calixarenes: A Versatile Class of Macrocyclic Compounds. Kluwer Academic Publishers: Dordrecht, Boston (1991).
S. Ikeda and S. Shinkai, Chem. Rev., 97, 1713 (1997); https://doi.org/10.1021/cr960385x
V. Böhmer, Angew. Chem. Int. Ed. Engl., 34, 713 (1995); https://doi.org/10.1002/anie.199507131
A. Suwattanamala, A.L. Magalhães and J.A.N.F. Gomes, J. Mol. Struct. THEOCHEM, 729, 83 (2005); https://doi.org/10.1016/j.theochem.2005.03.060
N. Iki, F. Narumi, T. Fujimoto, N. Morohashi and S. Miyano, J. Chem. Soc. Perkin Trans. II, 2745 (1998); https://doi.org/10.1039/a803734e
S. Seiji, A. Koji, T. Takayuki, A. Takashi and M. Osamu, J. Chem. Soc. Perkin Trans. II, 2297 (1987).
H. Bakirci, A.L. Koner and W.M. Nau, J. Org. Chem., 70, 9960 (2005); https://doi.org/10.1021/jo051689z
S. Shinkai, K. Araki, T. Matsuda, N. Nishiyama, H. Ikeda, I. Takasu and M. Iwamoto, J. Am. Chem. Soc., 112, 9053 (1990); https://doi.org/10.1021/ja00181a004
G. Arena, A. Casnati, A. Contino, F.G. Gulino, D. Sciotto and R. Ungaro, J. Chem. Soc., Perkin Trans. II, 419 (2000); https://doi.org/10.1039/a909847j
K. Wang, D.S. Guo, H.Q. Zhang, D. Li, X.L. Zheng and Y. Liu, J. Med. Chem., 52, 6402 (2009); https://doi.org/10.1021/jm900811z
H. Weidel and M. Russo, Monatsh. Chem., 3, 850 (1882); https://doi.org/10.1007/BF01516855
E.L. Clennan, Coord. Chem. Rev., 248, 477 (2004); https://doi.org/10.1016/j.ccr.2004.01.001
C.L. Bird and A.T. Kuhn, Chem. Soc. Rev., 10, 49 (1981); https://doi.org/10.1039/cs9811000049
L.A. Summers, The Bipyridinium Herbicides, Academic Press: New York (1980).
D. Meisel, W.A. Mulac and M.S. Matheson, J. Phys. Chem., 85, 179 (1981); https://doi.org/10.1021/j150602a015
P.M.S. Monk, The Viologens. Physicochemical Properties, Synthesis and Applications of the Salts of 4,4′-Bipyridine, John Wiley & Sons: Chichester, U.K. (1998).
J.M. Lu, S.V. Rosokha and J.K. Kochi, J. Am. Chem. Soc., 125, 12161 (2003); https://doi.org/10.1021/ja0364928
W. Ong and A.E. Kaifer, J. Org. Chem., 69, 1383 (2004); https://doi.org/10.1021/jo035030+
K. Wang, S.-Y. Xing, X.-G. Wang and H.-X. Dou, Org. Biomol. Chem., 13, 5432 (2015); https://doi.org/10.1039/C5OB00053J
D.S. Guo, L.H. Wang and Y. Liu, J. Org. Chem., 72, 7775 (2007); https://doi.org/10.1021/jo701304g
P. Politzer, Chemical Applications of Atomic and Molecular Electrostatic Potentials, Plenum: NewYork (1981).
G. Naray-Szabo and G.G. Ferenczy, Chem. Rev., 95, 829 (1995); https://doi.org/10.1021/cr00036a002
S.R. Gadre, S.A. Kulkarni and I.H. Shrivastava, J. Chem. Phys., 96, 5253 (1992); https://doi.org/10.1063/1.462710
S.R. Gadre and R.N. Shirsat, Electrostatics of Atoms and Molecules. Universities Press: Hyderabad, India (2000).
A.D. Becke, J. Chem. Phys., 98, 5648 (1993); https://doi.org/10.1063/1.464913
C. Lee, W. Yang and R.G. Parr, Phys. Rev. B Condens. Matter, 37, 785 (1988); https://doi.org/10.1103/PhysRevB.37.785
Y. Zhao and D.G. Truhlar, Theor. Chem. Acc., 120, 215 (2008); https://doi.org/10.1007/s00214-007-0310-x
M.J. Frisch et al., Gaussian 09, Gaussian Inc.: Wallingford (2009).
P. Balanarayan and S.R. Gadre, J. Chem. Phys., 119, 5037 (2003); https://doi.org/10.1063/1.1597652
A.C. Limaye and S.R. Gadre, Curr. Sci., 80, 1296 (2001).
R.F.W. Bader, Atoms in Molecules: A Quantum Theory, Oxford University Press: Oxford, U.K. (1990).
D.F. Matta and R.J. Boyd, The Quantum Theory of Atoms in Molecules, An Introduction to the Quantum Theory of Atoms in Molecules, WileyVCH: Weinheim, pp. 1-34 (2007).
K. Wolinski, J.F. Hinton and P. Pulay, J. Am. Chem. Soc., 112, 8251 (1990); https://doi.org/10.1021/ja00179a005
S. Miertuš, E. Scrocco and J. Tomasi, Chem. Phys., 55, 117 (1981); https://doi.org/10.1016/0301-0104(81)85090-2
A. Bagno, F. Rastrelli and G. Saielli, J. Org. Chem., 72, 7373 (2007); https://doi.org/10.1021/jo071129v