Copyright (c) 2020 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Interaction Between α-Glucosidase Inhibitor with Common Blood Proteins: A Thermodynamic and Spectroscopic Studies
Corresponding Author(s) : Ajaya Bhattarai
Asian Journal of Chemistry,
Vol. 32 No. 7 (2020): Vol 32 Issue 7
Abstract
The interaction of an α-glucosidase inhibitors class of drug acarbose with globular proteins like bovine serum albumin (BSA), human serum albumin (HSA) and haemoglobin studied by fluorescence, circular dichroism (CD) spectroscopic methods. Acarbose is used for the treatment of diabetes mellitus type 2 and in some countries, prediabetes. The quenching constant (kq) values were calculated by using fluorescence data, higher with haemoglobin (at λext = 405 nm). It indicates the quenching process for the acarbose-haemoglobin interaction. Thus, the binding constants (kb), infers that the electrostatic, hydrogen bonding, and intermolecular interactions play an important role in the proteins, and drug interaction. The number of binding sites (n), between BSA, HSA and haemoglobin with acarbose was estimated by fluorescence data, the highest binding sites (15.55) of acarbose-haemoglobin at (λext = 405 nm) indicates that the strong interaction or high quenching interaction. The interactions between BSA, HSA and haemoglobin with acarbose were confirmed by spectroscopic analysis and thermodynamic determination. The circular dichroism (CD) spectra implied the significant change in the conformation of BSA, HSA and haemoglobin upon binding with acarbose.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A.B. Khan, J.M. Khan, M.S. Ali, R.H. Khan and Kabir-ud-Din, Spectrochim. Acta A Mol. Biomol. Spectrosc., 97, 119 (2012); https://doi.org/10.1016/j.saa.2012.05.060
- S. Tabassum, W.M. Al-Asbahy, M. Afzal, F. Arjmand and R.H. Khan, Mol. Biosyst., 8, 2424 (2012); https://doi.org/10.1039/c2mb25119a
- A.B. Khan, J.M. Khan, M.S. Ali, R.H. Khan and K. Din, Colloids Surf. B Biointerfaces, 87, 447 (2011); https://doi.org/10.1016/j.colsurfb.2011.06.007
- A. Varshney, M. Rehan, N. Subbarao, G. Rabbani and R.H. Khan, PLoS One, 6, e17230 (2011); https://doi.org/10.1371/journal.pone.0017230
- K.M. Sachin, A. Chandra and M. Singh, J. Mol. Liq., 246, 379 (2017); https://doi.org/10.1016/j.molliq.2017.09.076
- K.M. Sachin and M. Singh, RSC Adv., 9, 15805 (2019); https://doi.org/10.1039/C9RA00851A
- A. Varshney, P. Sen, E. Ahmad, M. Rehan, N. Subbarao and R.H. Khan, Chirality, 22, 77 (2010); https://doi.org/10.1002/chir.20709
- B. Ahmad, S. Parveen and R.H. Khan, Biomacromolecules, 7, 1350 (2006); https://doi.org/10.1021/bm050996b
- U. Kragh-Hansen, Pharmacol. Rev., 33, 17 (1981).
- K. Sneppen and G. Zocchi, Physics in Molecular Biology, Cambridge University Press: Cambridge, UK (2006).
- Z.M. Wen and S.T. Ye, Asian Pac. J. Allergy Immunol., 11, 13 (1993).
- P. Ramlagan, P. Rondeau, C. Planesse, V.S. Neergheen-Bhujun, E. Bourdon and T. Bahorun, Food Funct., 8, 4194 (2017); https://doi.org/10.1039/C7FO01038A
- N. Pantidos, A. Boath, V. Lund, S. Conner and G.J. McDougall, J. Funct. Foods, 10, 201 (2014); https://doi.org/10.1016/j.jff.2014.06.018
- A.E.K. Loo and D. Huang, J. Agric. Food Chem., 55, 9805 (2007); https://doi.org/10.1021/jf071500f
- G. Lehoczki, K. Szabo, I. Takacs, L. Kandra and G. Gyemant, J. Enzyme Inhib. Med. Chem., 31, 1648 (2016); https://doi.org/10.3109/14756366.2016.1161619
- L. Kandra, G. Gyemant, A. Zajacz and G. Batta, Biochem. Biophys. Res. Commun., 319, 1265 (2004); https://doi.org/10.1016/j.bbrc.2004.05.122
- R. Agrawal, M.K. Siddiqi, Y. Thakur, M. Tripathi, A.K. Asatkar, R.H. Khan and R. Pande, Luminescence, 34, 628 (2019); https://doi.org/10.1002/bio.3645
- V.D. Suryawanshi, L.S. Walekar, A.H. Gore, P.V. Anbhule and G.B. Kolekar, J. Pharm. Anal., 6, 56 (2016); https://doi.org/10.1016/j.jpha.2015.07.001
- M.A. Rub, J.M. Khan, A.M. Asiri, R.H. Khan and Kabir-ud-Din, J. Lumin., 155, 39 (2014); https://doi.org/10.1016/j.jlumin.2014.06.009
- L.A. Sklar, B.S. Hudson and R.D. Simoni, Biochemistry, 16, 5100 (1977); https://doi.org/10.1021/bi00642a024
- J. Steinhardt, J. Krijn and J.G. Leidy, Biochemistry, 10, 4005 (1971); https://doi.org/10.1021/bi00798a001
- M. Yamasaki, T. Yamashita(Isoda), H. Yano, K. Tatsumi and K. Aoki, Int. J. Biol. Macromol., 19, 241 (1996); https://doi.org/10.1016/S0141-8130(96)01133-6
- H. Yuan, W.E. Antholine, W.K. Subczynski and M.A. Green, J. Inorg. Biochem., 61, 251 (1996); https://doi.org/10.1016/0162-0134(95)00072-0
- W. Parker and P.S. Song, Biophys. J., 61, 1435 (1992); https://doi.org/10.1016/S0006-3495(92)81949-5
- H.M. Zhang, Y.Q. Wang and M.L. Jiang, Dyes Pigments, 82, 156 (2009); https://doi.org/10.1016/j.dyepig.2008.12.008.
- P.D. Ross and S. Subramanian, Biochemistry, 20, 3096 (1981); https://doi.org/10.1021/bi00514a017
- M. Yu, Z. Ding, F. Jiang, X. Ding, J. Sun, S. Chen and G. Lv, Spectrochim. Acta A Mol. Biomol. Spectrosc., 83, 453 (2011); https://doi.org/10.1016/j.saa.2011.08.065
- T. Forster and O. Sinanoglu, Modern Quantum Chemistry, Academic Press: New York (1966).
- K. Kaur, R. Kumar and S.K. Mehta, J. Mol. Liq., 209, 62 (2015); https://doi.org/10.1016/j.molliq.2015.05.018
- Y. Shi, H. Liu, M. Xu, Z. Li, G. Xie, L. Huang and Z. Zeng, Spectrochim. Acta A Mol. Biomol. Spectrosc., 87, 251 (2012); https://doi.org/10.1016/j.saa.2011.11.048
- N. Wang, L. Ye, F. Yan and R. Xu, Int. J. Pharm., 351, 55 (2008); https://doi.org/10.1016/j.ijpharm.2007.09.016
- P. Ghosh, J. Patwari and S. Dasgupta, J. Phys. Chem. B, 121, 1758 (2017); https://doi.org/10.1021/acs.jpcb.6b08559
- P.B. Kandagal, J. Seetharamappa, S. Ashoka, S.M.T. Shaikh and D.H. Manjunatha, Int. J. Biol. Macromol., 39, 234 (2006); https://doi.org/10.1016/j.ijbiomac.2006.03.027
- S. Bi, D. Song, Y. Tian, X. Zhou, Z. Liu and H. Zhang, Spectrochim. Acta A Mol. Biomol. Spectrosc., 61, 629 (2005); https://doi.org/10.1016/j.saa.2004.05.028
- P.N. Naik, S.A. Chimatadar and S.T. Nandibewoor, Spectrochim. Acta A Mol. Biomol. Spectrosc., 73, 841 (2009); https://doi.org/10.1016/j.saa.2009.04.018
- K.M. Sachin, S.A. Karpe, M. Singh and A. Bhattarai, Biointerf. Res. Appl. Chem., 9, 4172 (2019); https://doi.org/10.33263/BRIAC94.172176
- J. Greener, B.A. Contestable and M.D. Bale, Macromolecules, 20, 2490 (1987); https://doi.org/10.1021/ma00176a029
- L.A. Romankiw and I.M. Chou, J. Chem. Eng. Data, 28, 300 (1983); https://doi.org/10.1021/je00033a005
- J. George, S.M. Nair and L. Sreejith, J. Surfactants Deterg., 11, 29 (2008); https://doi.org/10.1007/s11743-007-1050-6
References
A.B. Khan, J.M. Khan, M.S. Ali, R.H. Khan and Kabir-ud-Din, Spectrochim. Acta A Mol. Biomol. Spectrosc., 97, 119 (2012); https://doi.org/10.1016/j.saa.2012.05.060
S. Tabassum, W.M. Al-Asbahy, M. Afzal, F. Arjmand and R.H. Khan, Mol. Biosyst., 8, 2424 (2012); https://doi.org/10.1039/c2mb25119a
A.B. Khan, J.M. Khan, M.S. Ali, R.H. Khan and K. Din, Colloids Surf. B Biointerfaces, 87, 447 (2011); https://doi.org/10.1016/j.colsurfb.2011.06.007
A. Varshney, M. Rehan, N. Subbarao, G. Rabbani and R.H. Khan, PLoS One, 6, e17230 (2011); https://doi.org/10.1371/journal.pone.0017230
K.M. Sachin, A. Chandra and M. Singh, J. Mol. Liq., 246, 379 (2017); https://doi.org/10.1016/j.molliq.2017.09.076
K.M. Sachin and M. Singh, RSC Adv., 9, 15805 (2019); https://doi.org/10.1039/C9RA00851A
A. Varshney, P. Sen, E. Ahmad, M. Rehan, N. Subbarao and R.H. Khan, Chirality, 22, 77 (2010); https://doi.org/10.1002/chir.20709
B. Ahmad, S. Parveen and R.H. Khan, Biomacromolecules, 7, 1350 (2006); https://doi.org/10.1021/bm050996b
U. Kragh-Hansen, Pharmacol. Rev., 33, 17 (1981).
K. Sneppen and G. Zocchi, Physics in Molecular Biology, Cambridge University Press: Cambridge, UK (2006).
Z.M. Wen and S.T. Ye, Asian Pac. J. Allergy Immunol., 11, 13 (1993).
P. Ramlagan, P. Rondeau, C. Planesse, V.S. Neergheen-Bhujun, E. Bourdon and T. Bahorun, Food Funct., 8, 4194 (2017); https://doi.org/10.1039/C7FO01038A
N. Pantidos, A. Boath, V. Lund, S. Conner and G.J. McDougall, J. Funct. Foods, 10, 201 (2014); https://doi.org/10.1016/j.jff.2014.06.018
A.E.K. Loo and D. Huang, J. Agric. Food Chem., 55, 9805 (2007); https://doi.org/10.1021/jf071500f
G. Lehoczki, K. Szabo, I. Takacs, L. Kandra and G. Gyemant, J. Enzyme Inhib. Med. Chem., 31, 1648 (2016); https://doi.org/10.3109/14756366.2016.1161619
L. Kandra, G. Gyemant, A. Zajacz and G. Batta, Biochem. Biophys. Res. Commun., 319, 1265 (2004); https://doi.org/10.1016/j.bbrc.2004.05.122
R. Agrawal, M.K. Siddiqi, Y. Thakur, M. Tripathi, A.K. Asatkar, R.H. Khan and R. Pande, Luminescence, 34, 628 (2019); https://doi.org/10.1002/bio.3645
V.D. Suryawanshi, L.S. Walekar, A.H. Gore, P.V. Anbhule and G.B. Kolekar, J. Pharm. Anal., 6, 56 (2016); https://doi.org/10.1016/j.jpha.2015.07.001
M.A. Rub, J.M. Khan, A.M. Asiri, R.H. Khan and Kabir-ud-Din, J. Lumin., 155, 39 (2014); https://doi.org/10.1016/j.jlumin.2014.06.009
L.A. Sklar, B.S. Hudson and R.D. Simoni, Biochemistry, 16, 5100 (1977); https://doi.org/10.1021/bi00642a024
J. Steinhardt, J. Krijn and J.G. Leidy, Biochemistry, 10, 4005 (1971); https://doi.org/10.1021/bi00798a001
M. Yamasaki, T. Yamashita(Isoda), H. Yano, K. Tatsumi and K. Aoki, Int. J. Biol. Macromol., 19, 241 (1996); https://doi.org/10.1016/S0141-8130(96)01133-6
H. Yuan, W.E. Antholine, W.K. Subczynski and M.A. Green, J. Inorg. Biochem., 61, 251 (1996); https://doi.org/10.1016/0162-0134(95)00072-0
W. Parker and P.S. Song, Biophys. J., 61, 1435 (1992); https://doi.org/10.1016/S0006-3495(92)81949-5
H.M. Zhang, Y.Q. Wang and M.L. Jiang, Dyes Pigments, 82, 156 (2009); https://doi.org/10.1016/j.dyepig.2008.12.008.
P.D. Ross and S. Subramanian, Biochemistry, 20, 3096 (1981); https://doi.org/10.1021/bi00514a017
M. Yu, Z. Ding, F. Jiang, X. Ding, J. Sun, S. Chen and G. Lv, Spectrochim. Acta A Mol. Biomol. Spectrosc., 83, 453 (2011); https://doi.org/10.1016/j.saa.2011.08.065
T. Forster and O. Sinanoglu, Modern Quantum Chemistry, Academic Press: New York (1966).
K. Kaur, R. Kumar and S.K. Mehta, J. Mol. Liq., 209, 62 (2015); https://doi.org/10.1016/j.molliq.2015.05.018
Y. Shi, H. Liu, M. Xu, Z. Li, G. Xie, L. Huang and Z. Zeng, Spectrochim. Acta A Mol. Biomol. Spectrosc., 87, 251 (2012); https://doi.org/10.1016/j.saa.2011.11.048
N. Wang, L. Ye, F. Yan and R. Xu, Int. J. Pharm., 351, 55 (2008); https://doi.org/10.1016/j.ijpharm.2007.09.016
P. Ghosh, J. Patwari and S. Dasgupta, J. Phys. Chem. B, 121, 1758 (2017); https://doi.org/10.1021/acs.jpcb.6b08559
P.B. Kandagal, J. Seetharamappa, S. Ashoka, S.M.T. Shaikh and D.H. Manjunatha, Int. J. Biol. Macromol., 39, 234 (2006); https://doi.org/10.1016/j.ijbiomac.2006.03.027
S. Bi, D. Song, Y. Tian, X. Zhou, Z. Liu and H. Zhang, Spectrochim. Acta A Mol. Biomol. Spectrosc., 61, 629 (2005); https://doi.org/10.1016/j.saa.2004.05.028
P.N. Naik, S.A. Chimatadar and S.T. Nandibewoor, Spectrochim. Acta A Mol. Biomol. Spectrosc., 73, 841 (2009); https://doi.org/10.1016/j.saa.2009.04.018
K.M. Sachin, S.A. Karpe, M. Singh and A. Bhattarai, Biointerf. Res. Appl. Chem., 9, 4172 (2019); https://doi.org/10.33263/BRIAC94.172176
J. Greener, B.A. Contestable and M.D. Bale, Macromolecules, 20, 2490 (1987); https://doi.org/10.1021/ma00176a029
L.A. Romankiw and I.M. Chou, J. Chem. Eng. Data, 28, 300 (1983); https://doi.org/10.1021/je00033a005
J. George, S.M. Nair and L. Sreejith, J. Surfactants Deterg., 11, 29 (2008); https://doi.org/10.1007/s11743-007-1050-6